Skip to main content

RETRACTED CHAPTER: U-Control Chart Based Differential Evolution Clustering for Determining the Number of Cluster in k-Means

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11484))

Abstract

The automatic clustering differential evolution (ACDE) is one of the clustering methods that are able to determine the cluster number automatically. However, ACDE still makes use of the manual strategy to determine k activation threshold thereby affecting its performance. In this study, the ACDE problem will be ameliorated using the u-control chart (UCC) then the cluster number generated from ACDE will be fed to k-means. The performance of the proposed method was tested using six public datasets from the UCI repository about academic efficiency (AE) and evaluated with Davies Bouldin Index (DBI) and Cosine Similarity (CS) measure. The results show that the proposed method yields excellent performance compared to prior researches.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Salem, S.B., Naouali, S., Chtourou, Z.: A fast and effective partitional clustering algorithm for large categorical datasets using a k-means based approach. Comput. Electr. Eng. 68, 463–483 (2018). https://doi.org/10.1016/j.compeleceng.2018.04.023

    Article  Google Scholar 

  2. Chakraborty, S., Das, S.: Simultaneous variable weighting and determining the number of clusters—a weighted Gaussian means algorithm. Stat. Probab. Lett. 137, 148–156 (2018). https://doi.org/10.1016/j.spl.2018.01.015

    Article  MathSciNet  MATH  Google Scholar 

  3. Masud, M.A, Huang, J.Z., Wei, C., Wang, J., Khan, I., Zhong, M.: I-nice: a new approach for identifying the number of clusters and initial cluster centres. Inf. Sci. (NY) (2018). https://doi.org/10.1016/j.ins.2018.07.034

  4. Rahman, M.A., Islam, M.Z., Bossomaier, T.: ModEx and seed-detective: two novel techniques for high quality clustering by using good initial seeds in k-means. J. King Saud Univ. – Comput. Inf. Sci. 27, 113–128 (2015). https://doi.org/10.1016/j.jksuci.2014.04.002

    Article  Google Scholar 

  5. Rahman, M.A., Islam, M.Z.: A hybrid clustering technique combining a novel genetic algorithm with k-means. Knowl.-Based Syst. 71, 345–365 (2014). https://doi.org/10.1016/j.knosys.2014.08.011

    Article  Google Scholar 

  6. Ramadas, M., Abraham, A., Kumar, S.: FSDE-forced strategy differential evolution used for data clustering. J. King Saud Univ. - Comput. Inf. Sci. (2016). https://doi.org/10.1016/j.jksuci.2016.12.005

  7. Yaqian, Z., Chai, Q.H., Boon, G.W.: Curvature-based method for determining the number of clusters. Inf. Sci. (NY) (2017). https://doi.org/10.1016/j.ins.2017.05.024

  8. Tîrnăucă, C., Gómez-Pérez, D., Balcázar, J.L., Montaña, J.L.: Global optimality in k-means clustering. Inf. Sci. (NY) 439–440, 79–94 (2018). https://doi.org/10.1016/j.ins.2018.02.001

    Article  MathSciNet  MATH  Google Scholar 

  9. Xiang, W., Zhu, N., Ma, S., Meng, X., An, M.: A dynamic shuffled differential evolution algorithm for data clustering. Neurocomputing (2015). https://doi.org/10.1016/j.neucom.2015.01.058

  10. Garcia, A.J., Flores, W.G.: Automatic clustering using nature-inspired metaheuristics: a survey. Appl. Soft Comput. (2016). https://doi.org/10.1016/j.asoc.2015.12.001

  11. Das, S., Abraham, A., Konar, A.: Automatic clustering using an improved differential evolution algorithm. IEEE Trans. Syst. Man Cybern. - Part A Syst. Hum. 38, 218–237 (2008). https://doi.org/10.1109/TSMCA.2007.909595

    Article  Google Scholar 

  12. Omran, M.G.H., Engelbrecht, A.P., Salman, A.: Dynamic clustering using particle swarm optimization with application in image segmentation. Pattern Anal. Appl. 332–344 (2006). https://doi.org/10.1007/s10044-005-0015-5

  13. Bandyopadhyay, S., Maulik, U.: Genetic clustering for automatic evolution of clusters and application to image classification. Pattern Recogn. 35, 1197–1208 (2002)

    Article  MATH  Google Scholar 

  14. Tam, H., Ng, S., Lui, A.K., Leung, M.: Improved activation schema on automatic clustering using differential evolution algorithm. In: IEEE Congress on Evolutionary Computation (CEC), pp. 1749–1756 (2017). https://doi.org/10.1109/CEC.2017.7969513

  15. Kuo, R., Suryani, E., Yasid, A.: Automatic clustering combining differential evolution algorithm and k-means algorithm. In: Proceedings of the Institute of Industrial Engineers Asian Conference 2013, pp. 1207–1215 (2013). https://doi.org/10.1007/978-981-4451-98-7

  16. Piotrowski, A.P.: Review of differential evolution population size. Swarm Evol. Comput. 32, 1–24 (2017). https://doi.org/10.1016/j.swevo.2016.05.003

    Article  Google Scholar 

  17. Kaya, I.: A genetic algorithm approach to determine the sample size for attribute control charts. Inf. Sci. (NY) 179, 1552–1566 (2009). https://doi.org/10.1016/j.ins.2008.09.024

    Article  Google Scholar 

  18. Dobbie, G., Sing, Y., Riddle, P., Ur, S.: Research on particle swarm optimization based clustering: a systematic review of literature and techniques. Swarm Evol. Comput. 17, 1–13 (2014). https://doi.org/10.1016/j.swevo.2014.02.001

    Article  Google Scholar 

  19. Departamento Administrativo Nacional de Estadística: Página principal. Recuperado de: DANE (2018). http://www.dane.gov.co/

  20. Torres-Samuel, M., Vásquez, C.L., Viloria, A., Varela, N., Hernández-Fernandez, L., Portillo-Medina, R.: Analysis of patterns in the university world rankings webometrics, Shanghai, QS and SIR-SCimago: case Latin America. In: Tan, Y., Shi, Y., Tang, Q. (eds.) DMBD 2018. LNCS, vol. 10943, pp. 188–199. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93803-5_18

    Chapter  Google Scholar 

  21. Vásquez, C., Torres, M., Viloria, A.: Public policies in science and technology in Latin American countries with universities in the top 100 of web ranking. J. Eng. Appl. Sci. 12(11), 2963–2965 (2017)

    Google Scholar 

  22. Torres-Samuel, M., et al.: Efficiency analysis of the visibility of Latin American universities and their impact on the ranking web. In: Tan, Y., Shi, Y., Tang, Q. (eds.) DMBD 2018. LNCS, vol. 10943, pp. 235–243. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93803-5_22

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesús Silva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Cite this paper

Silva, J. et al. (2019). RETRACTED CHAPTER: U-Control Chart Based Differential Evolution Clustering for Determining the Number of Cluster in k-Means. In: Miani, R., Camargos, L., Zarpelão, B., Rosas, E., Pasquini, R. (eds) Green, Pervasive, and Cloud Computing. GPC 2019. Lecture Notes in Computer Science(), vol 11484. Springer, Cham. https://doi.org/10.1007/978-3-030-19223-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-19223-5_3

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-19222-8

  • Online ISBN: 978-3-030-19223-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics