Skip to main content

Last-Mile Scheduling Under Uncertainty

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11494))

Abstract

Shared mobility is revolutionizing urban transportation and has sparked interest in optimizing the joint schedule of passengers using public transit and last-mile services. Scheduling systems must anticipate future requests and provision flexibility in order to be adopted in practice. In this work, we consider a two-stage stochastic programming formulation for scheduling a set of known passengers and uncertain passengers that are realized from a finite set of scenarios. We present an optimization approach based on decision diagrams. We obtain, in minutes, schedules for 1,000 known passengers that are robust and optimized with respect to scenarios involving up to 100 additional uncertain passengers.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    We assume a single destination per CV trip [17, 18] and only a few destinations [15], which is operationally favorable since destination batching leads to efficiency.

References

  1. Andersen, H.R., Hadzic, T., Hooker, J.N., Tiedemann, P.: A constraint store based on multivalued decision diagrams. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 118–132. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74970-7_11. http://dl.acm.org/citation.cfm?id=1771668.1771682

    Chapter  Google Scholar 

  2. Ben-Tal, A., Nemirovski, A.: Robust optimization - methodology and applications. Math. Program. 92(3), 453–480 (2002). https://doi.org/10.1007/s101070100286

    Article  MathSciNet  MATH  Google Scholar 

  3. Bergman, D., Cire, A., van Hoeve, W., Hooker, J.: Decision Diagrams for Optimization. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42849-9

    Book  MATH  Google Scholar 

  4. Bergman, D., Cire, A.A.: Decomposition based on decision diagrams. In: Quimper, C.-G. (ed.) CPAIOR 2016. LNCS, vol. 9676, pp. 45–54. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-33954-2_4

    Chapter  Google Scholar 

  5. Bergman, D., Cire, A.A.: Discrete nonlinear optimization by state-space decompositions. Manage. Sci. 64(10), 4700–4720 (2018). https://doi.org/10.1287/mnsc.2017.2849

    Article  Google Scholar 

  6. Bergman, D., van Hoeve, W.-J., Hooker, J.N.: Manipulating MDD relaxations for combinatorial optimization. In: Achterberg, T., Beck, J.C. (eds.) CPAIOR 2011. LNCS, vol. 6697, pp. 20–35. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21311-3_5

    Chapter  MATH  Google Scholar 

  7. Bergman, D., Lozano, L.: Decision diagram decomposition for quadratically constrained binary optimization. Optimization Online e-prints, October 2018

    Google Scholar 

  8. Birge, J.R., Louveaux, F.: Introduction to Stochastic Programming. Springer, New York (2011). https://doi.org/10.1007/978-1-4614-0237-4

    Book  MATH  Google Scholar 

  9. Grosse-Ophoff, A., Hausler, S., Heineke, K., Möller, T.: How shared mobility will change the automotive industry (2017). https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/how-shared-mobility-will-change-the-automotive-industry

  10. Haus, U.U., Michini, C., Laumanns, M.: Scenario aggregation using binary decision diagrams for stochastic programs with endogenous uncertainty (2017)

    Google Scholar 

  11. Kleywegt, A., Shapiro, A., Homem-de Mello, T.: The sample average approximation method for stochastic discrete optimization. SIAM J. Optim. 12(2), 479–502 (2002). https://doi.org/10.1137/S1052623499363220

    Article  MathSciNet  MATH  Google Scholar 

  12. Liu, Z., Jiang, X., Cheng, W.: Solving in the last mile problem: ensure the success of public bicycle system in Beijing. Procedia Soc. Behav. Sci. 43, 73–78 (2012)

    Article  Google Scholar 

  13. Lozano, L., Bergman, D., Smith, J.C.: On the consistent path problem. Optimization Online e-prints, April 2018

    Google Scholar 

  14. Lozano, L., Smith, J.C.: A binary decision diagram based algorithm for solving a class of binary two-stage stochastic programs. Math. Program. (2018). https://doi.org/10.1007/s10107-018-1315-z

    Article  Google Scholar 

  15. Mahéo, A., Kilby, P., Hentenryck, P.V.: Benders decomposition for the design of a hub and shuttle public transit system. Transp. Sci. 53(1), 77–88 (2018)

    Article  Google Scholar 

  16. McCoy, K., Andrew, J., Glynn, R., Lyons, W.: Integrating shared mobility into multimodal transportation planning: improving regional performance to meet public goals. Technical report, Office of the Assistant Secretary of Transportation for Research and Technology, U.S. Department of Transportation (2018)

    Google Scholar 

  17. Raghunathan, A.U., Bergman, D., Hooker, J., Serra, T., Kobori, S.: Seamless multimodal transportation scheduling. arXiv:1807.09676 (2018)

  18. Raghunathan, A.U., Bergman, D., Hooker, J.N., Serra, T., Kobori, S.: The integrated last-mile transportation problem (ILMTP). In: Proceedings of the Twenty-Eighth International Conference on Automated Planning and Scheduling, ICAPS 2018, Delft, The Netherlands, 24–29 June 2018, pp. 388–398 (2018). https://aaai.org/ocs/index.php/ICAPS/ICAPS18/paper/view/17720

  19. Shaheen, S.: U.S. carsharing & station car policy considerations: monitoring growth, trends & overall impacts. Technical report, Institute of transportation studies, Working paper series, Institute of Transportation Studies, UC Davis (2004)

    Google Scholar 

  20. Shen, Y., Zhang, H., Zhao, J.: Simulating the first mile service to access train stations by shared autonomous vehicle. In: Transportation Research Board 96th Annual Meeting (2017)

    Google Scholar 

  21. Thien, N.D.: Fair cost sharing auction mechanisms in last mile ridesharing. Ph.D. thesis, Singapore Management University (2013)

    Google Scholar 

  22. Wang, H.: Routing and scheduling for a last-mile transportation problem. Transp. Sci. 53(1), 1–17 (2017). https://doi.org/10.1287/trsc.2017.0753. http://pubsonline.informs.org/doi/abs/10.1287/trsc.2017.0753

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arvind U. Raghunathan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Serra, T., Raghunathan, A.U., Bergman, D., Hooker, J., Kobori, S. (2019). Last-Mile Scheduling Under Uncertainty. In: Rousseau, LM., Stergiou, K. (eds) Integration of Constraint Programming, Artificial Intelligence, and Operations Research. CPAIOR 2019. Lecture Notes in Computer Science(), vol 11494. Springer, Cham. https://doi.org/10.1007/978-3-030-19212-9_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-19212-9_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-19211-2

  • Online ISBN: 978-3-030-19212-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics