Skip to main content

Bits and Qubits

  • Chapter
  • First Online:
Book cover A Primer on Quantum Computing

Part of the book series: SpringerBriefs in Computer Science ((BRIEFSCOMPUTER))

  • 2847 Accesses

Abstract

Quantum computing is an interdisciplinary field of research, and it is natural that many people starting in this area should feel uncomfortable with the fundamentals of either computer science or physics. In this chapter, we briefly review the basic concepts necessary to follow the rest of the book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Sometimes it may be convenient to have a CNOT with negative control, so that the target bit is flipped if and only if the control bit is zero. A negative control is usually represented in the circuit model by replacing the full bullet • by an empty bullet ∘ on the control line.

  2. 2.

    Currently, there is an excellent website known as the Quantum Algorithm Zoo, available at http://math.nist.gov/quantum/zoo/.

  3. 3.

    Other influential models are adiabatic quantum computing [16, 44] , topological quantum computing [22, 24, 34] , cluster-state quantum computing (a.k.a. measurement-based quantum computing or one-way quantum computing) [35, 40] , quantum Turing machines [14, 45], quantum random access machines (qRAM) [17, 31] , deterministic quantum computing with one qubit (DQC1) [13, 23] , IQP computing (a.k.a. temporally unstructured quantum computations) [8, 42], quantum walks [10, 11, 27], and the quantum query model [2, 6], for instance.

  4. 4.

    T gate is also known in the literature as the π∕8 gate, which may seem a little counterintuitive. The reader should consider that as a special case P(2π∕8).

  5. 5.

    Sometimes it may be convenient to have a CNOT with negative control, so that the target qubit is flipped if and only if the control qubit is \({\left \vert {0}\right \rangle }\). A negative control is usually represented in the circuit model by replacing the full bullet • by an empty bullet ∘ on the control line.

  6. 6.

    Negative controls can also be applied in this case. The notation is the same as the one adopted in classical and quantum CNOTs, that is, replacing the full bullet • by the empty bullet ∘ on the negative control lines.

  7. 7.

    Microsoft LIQUiD can be downloaded from http://stationq.github.io/Liquid. The Microsoft Quantum Development Kit, which includes Q#, can be downloaded from https://www.microsoft.com/en-us/quantum/development-kit.

  8. 8.

    IBM Quantum Experience can be accessed at https://www.research.ibm.com/ibm-q/.

  9. 9.

    ProjectQ can be downloaded from http://projectq.ch.

  10. 10.

    More details at https://www.rigetti.com/qcs.

References

  1. Aaronson, S.: Quantum Computing since Democritus. Cambridge University Press, New York (2013)

    Book  Google Scholar 

  2. Ambainis, A.: Quantum query algorithms and lower bounds. In: Löwe, B., Piwinger, B., Räsch, T. (eds.) Classical and New Paradigms of Computation and their Complexity Hierarchies, pp. 15–32. Springer, Amsterdam, (2004)

    Chapter  Google Scholar 

  3. Ambainis, A.: Quantum walk algorithm for element distinctness. SIAM J. Comput. 37(1), 210–239 (2007). https://doi.org/10.1137/S0097539705447311

    Article  MathSciNet  Google Scholar 

  4. Arora, S., Barak, B.: Computational Complexity: A Modern Approach. Cambridge University Press, New York (2009)

    Book  Google Scholar 

  5. Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, N., Shor, P., Sleator, T., Smolin, J.A., Weinfurter, H.: Elementary gates for quantum computation. Phys. Rev. A 52(5), 3457–3467 (1995). https://doi.org/10.1103/PhysRevA.52.3457

    Article  Google Scholar 

  6. Barnum, H., Saks, M., Szegedy, M.: Quantum query complexity and semi-definite programming. In: Proceedings of 18th IEEE Annual Conference on Computational Complexity, 2003, pp. 179–193 (2003). https://doi.org/10.1109/CCC.2003.1214419

  7. Bernstein, E., Vazirani, U.: Quantum complexity theory. SIAM J. Comput. 26(5), 1411–1473 (1997). https://doi.org/10.1137/S0097539796300921

    Article  MathSciNet  Google Scholar 

  8. Bremner, M.J., Jozsa, R., Shepherd, D.J.: Classical simulation of commuting quantum computations implies collapse of the polynomial hierarchy. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 467(2126), 459–472 (2011). https://doi.org/10.1098/rspa.2010.0301

    Article  MathSciNet  Google Scholar 

  9. Chandra, R., Jacobson, N.T., Moussa, J.E., Frankel, S.H., Kais, S.: Quadratic constrained mixed discrete optimization with an adiabatic quantum optimizer. Phys. Rev. A 90, 012,308 (2014). https://doi.org/10.1103/PhysRevA.90.012308

    Article  Google Scholar 

  10. Childs, A.M.: Universal computation by quantum walk. Phys. Rev. Lett. 102, 180,501 (2009). https://doi.org/10.1103/PhysRevLett.102.180501

    Article  MathSciNet  Google Scholar 

  11. Childs, A.M., Gosset, D., Webb, Z.: Universal computation by multiparticle quantum walk. Science 339(6121), 791–794 (2013). https://doi.org/10.1126/science.1229957

    Article  MathSciNet  Google Scholar 

  12. Cohen-Tannoudji, C., Diu, B., Laloë, F.: Quantum Mechanics. Wiley, Hoboken (1977)

    MATH  Google Scholar 

  13. Datta, A., Shaji, A., Caves, C.M.: Quantum discord and the power of one qubit. Phys. Rev. Lett. 100, 050,502 (2008). https://doi.org/10.1103/PhysRevLett.100.050502

    Article  Google Scholar 

  14. Deutsch, D.: Quantum theory, the Church-Turing principle and the universal quantum computer. Proc. R. Soc. A Math. Phys. Eng. Sci. 400(1818), 97–117 (1985). https://doi.org/10.1098/rspa.1985.0070

    Article  MathSciNet  Google Scholar 

  15. De Vos, A.: Reversible Computing: Fundamentals, Quantum Computing, and Applications. Wiley, Hoboken (2011)

    MATH  Google Scholar 

  16. Farhi, E., Goldstone, J., Gutmann, S., Sipser, M.: Quantum computation by adiabatic evolution. Technical Report MIT-CTP-2936, Massachusetts Institute of Technology (2000). ArXiv:quant-ph/0001106

    Google Scholar 

  17. Gay, S.J.: Quantum programming languages: survey and bibliography. Math. Struct. Comput. Sci. 16(4), 581–600 (2006). https://doi.org/10.1017/S0960129506005378

    Article  MathSciNet  Google Scholar 

  18. Hardy, Y., Steeb, W.H.: Classical and Quantum Computing: With C++ and Java Simulations. Birkhäuser, Basel (2001). https://doi.org/10.1007/978-3-0348-8366-5

    Book  Google Scholar 

  19. Hirvensalo, M.: Quantum computing. In: Natural Computing Series. Springer, Berlin (2001)

    Book  Google Scholar 

  20. Hoffman, K., Kunze, R.A.: Linear Algebra. Prentice-Hall, Upper Saddle River (1971)

    MATH  Google Scholar 

  21. Kaye, P., Laflamme, R., Mosca, M.: An Introduction to Quantum Computing. Oxford University Press, Oxford (2007)

    MATH  Google Scholar 

  22. Kitaev, A.: Fault-tolerant quantum computation by anyons. Ann. Phys. 303(1), 2–30 (2003). https://doi.org/10.1016/S0003-4916(02)00018-0

    Article  MathSciNet  Google Scholar 

  23. Knill, E., Laflamme, R.: Power of one bit of quantum information. Phys. Rev. Lett. 81, 5672–5675 (1998). https://doi.org/10.1103/PhysRevLett.81.5672

    Article  Google Scholar 

  24. Lahtinen, V., Pachos, J.K.: A short introduction to topological quantum computation. SciPost Phys. 3, 021 (2017). https://10.21468/SciPostPhys.3.3.021

    Article  Google Scholar 

  25. Lang, S.: Linear Algebra. Springer, Heidelberg (1989)

    Google Scholar 

  26. Lewis, H.R., Papadimitriou, C.H.: Elements of the Theory of Computation, 2nd edn. Prentice-Hall, Upper Saddle River (1997)

    Google Scholar 

  27. Lovett, N.B., Cooper, S., Everitt, M., Trevers, M., Kendon, V.: Universal quantum computation using the discrete-time quantum walk. Phys. Rev. A 81, 042,330 (2010). https://doi.org/10.1103/PhysRevA.81.042330

    Article  MathSciNet  Google Scholar 

  28. Magniez, F., Santha, M., Szegedy, M.: Quantum algorithms for the triangle problem. In: Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’05, pp. 1109–1117. Society for Industrial and Applied Mathematics, Philadelphia (2005)

    Google Scholar 

  29. Magniez, F., Nayak, A., Roland, J., Santha, M.: Search via quantum walk. SIAM J. Comput. 40(1), 142–164 (2011). https://doi.org/10.1137/090745854

    Article  MathSciNet  Google Scholar 

  30. Messiah, A.: Quantum Mechanics. Dover, Mineola (2014)

    MATH  Google Scholar 

  31. Miszczak, J.A.: Models of quantum computation and quantum programming languages. Bull. Acad. Pol. Sci. Tech. Sci. 59(3), 305–324 (2011). https://doi.org/10.2478/v10175-011-0039-5

    MATH  Google Scholar 

  32. Miszczak, J.A.: High-level Structures for Quantum Computing. Synthesis Lectures on Quantum Computing. Morgan & Claypool, San Rafael (2012)

    Google Scholar 

  33. Montanaro, A.: Quantum algorithms: an overview. NPJ Quantum Inf. 2(15023) (2016). https://doi.org/10.1038/npjqi.2015.23

  34. Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008). https://doi.org/10.1103/RevModPhys.80.1083

    Article  MathSciNet  Google Scholar 

  35. Nielsen, M.A.: Cluster-state quantum computation. Rep. Math. Phys. 57(1), 147–161 (2006). https://doi.org/10.1016/S0034-4877(06)80014-5

    Article  MathSciNet  Google Scholar 

  36. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667

  37. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley Pub Co, Boston (1994)

    MATH  Google Scholar 

  38. Perumalla, K.S.: Introduction to Reversible Computing. Computational Science Series. Chapman & Hall/CRC, Boca Raton (2013)

    Google Scholar 

  39. Portugal, R.: Quantum Walks and Search Algorithms. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-97813-0

    Book  Google Scholar 

  40. Raussendorf, R., Briegel, H.J.: A one-way quantum computer. Phys. Rev. Lett. 86, 5188–5191 (2001). https://doi.org/10.1103/PhysRevLett.86.5188

    Article  Google Scholar 

  41. Reichardt, B.W.: Reflections for quantum query algorithms. In: Proceedings of the Twenty-second Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’11, pp. 560–569. Society for Industrial and Applied Mathematics, Philadelphia (2011)

    Google Scholar 

  42. Shepherd, D., Bremner, M.J.: Temporally unstructured quantum computation. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. (2009). https://doi.org/10.1098/rspa.2008.0443

    Article  MathSciNet  Google Scholar 

  43. Shor, P.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings 35th Annual Symposium on Foundations of Computer Science, pp. 124–134. IEEE Computer Society, Washington (1994). https://doi.org/10.1109/SFCS.1994.365700

  44. van Dam, W., Mosca, M., Vazirani, U.: How powerful is adiabatic quantum computation? In: Proceedings 2001 IEEE International Conference on Cluster Computing, pp. 279–287 (2001). https://doi.org/10.1109/SFCS.2001.959902

  45. Vazirani, U.V.: A survey of quantum complexity theory. In: Lomonaco Jr., S.J. (ed.) Quantum Computation: A Grand Mathematical Challenge for the Twenty-First Century and the Millennium. Proceedings of Symposia in Applied Mathematics, vol. 58, pp. 193–217. American Mathematical Society, Providence (2002)

    Chapter  Google Scholar 

  46. Viamontes, G.F., Markov, I.L., Hayes, J.P.: Quantum Circuit Simulation. Springer, Amsterdam (2009)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

de Lima Marquezino, F., Portugal, R., Lavor, C. (2019). Bits and Qubits. In: A Primer on Quantum Computing. SpringerBriefs in Computer Science. Springer, Cham. https://doi.org/10.1007/978-3-030-19066-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-19066-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-19065-1

  • Online ISBN: 978-3-030-19066-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics