Skip to main content

Molecular Dynamics Simulations of MXenes: Ab Initio, Reactive, and Non-reactive Empirical Force Fields

  • Chapter
  • First Online:
2D Metal Carbides and Nitrides (MXenes)

Abstract

In this chapter, we summarized molecular dynamics (MD) simulation methods with ab initio, reactive, and non-reactive empirical force fields. We reviewed various MXene applications such as energy storage, adsorption, intercalation, catalysis, exfoliation, and photocatalytic water splitting which have been investigated with MD simulations. Non-reactive MD simulations provide high computational efficiency in simulations of large-scale systems and slow dynamics of electrode charging. Reactive force fields can accurately describe chemistry of the MXene systems to provide insights to the ion intercalation and water diffusion in MXene sheets as well as measuring the friction coefficient of these structures. Ab initio MD method is often used to predict the final structure and various properties of the system and confirm the stability of the structure. We briefly presented essential work in the literature to provide an insight on how MD simulations are incorporated in efforts to investigate MXenes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anasori, B., Lukatskaya, M. R., & Gogotsi, Y. (2017). 2D metal carbides and nitrides (MXenes) for energy storage. Nature Reviews Materials, 2(2), 16098.

    Article  CAS  Google Scholar 

  2. Binder, K., et al. (2004). Molecular dynamics simulations. Journal of Physics-Condensed Matter, 16(5), S429–S453.

    Article  CAS  Google Scholar 

  3. Nose, S. (1984). A molecular-dynamics method for simulations in the canonical ensemble. Molecular Physics, 52(2), 255–268.

    Article  CAS  Google Scholar 

  4. Hoover, W. G. (1985). Canonical dynamics – equilibrium phase-space distributions. Physical Review A, 31(3), 1695–1697.

    Article  CAS  Google Scholar 

  5. Berendsen, H. J. C., et al. (1984). Molecular-dynamics with coupling to an external bath. Journal of Chemical Physics, 81(8), 3684–3690.

    Article  CAS  Google Scholar 

  6. Andersen, H. C. (1980). Molecular-dynamics simulations at constant pressure and-or temperature. Journal of Chemical Physics, 72(4), 2384–2393.

    Article  CAS  Google Scholar 

  7. Keating, P. N. (1966). Effect of invariance requirements on elastic strain energy of crystals with application to diamond structure. Physical Review, 145(2), 637.

    Article  CAS  Google Scholar 

  8. Gonzalez, M. A. (2010). Force fields and molecular dynamics simulations. Neutrons Et Simulations, Jdn, 18, 169–200.

    Google Scholar 

  9. Liang, T., et al. (2013). Reactive potentials for advanced atomistic simulations. Annual Review of Materials Research, 43, 109–129.

    Article  CAS  Google Scholar 

  10. Senftle, T. P., et al. (2016). The ReaxFF reactive force-field: Development, applications and future directions. npj Computational Materials, 2, 15011.

    Article  CAS  Google Scholar 

  11. van Duin, A. C. T., et al. (2001). ReaxFF: A reactive force field for hydrocarbons. Journal of Physical Chemistry A, 105(41), 9396–9409.

    Article  CAS  Google Scholar 

  12. Mortier, W. J., Ghosh, S. K., & Shankar, S. (1986). Electronegativity equalization method for the calculation of atomic charges in molecules. Journal of the American Chemical Society, 108(15), 4315–4320.

    Article  CAS  Google Scholar 

  13. Car, R., & Parrinello, M. (1985). Unified approach for molecular-dynamics and density-functional theory. Physical Review Letters, 55(22), 2471–2474.

    Article  CAS  Google Scholar 

  14. Blochl, P. E., & Parrinello, M. (1992). Adiabaticity in 1st-principles molecular-dynamics. Physical Review B, 45(16), 9413–9416.

    Article  CAS  Google Scholar 

  15. Borysiuk, V. N., Mochalin, V. N., & Gogotsi, Y. (2015). Molecular dynamic study of the mechanical properties of two-dimensional titanium carbides Tin+1Cn (MXenes). Nanotechnology, 26(26), 265705.

    Google Scholar 

  16. Borysiuk, V. N., Mochalin, V. N., & Gogotsi, Y. (2018). Bending rigidity of two-dimensional titanium carbide (MXene) nanoribbons: A molecular dynamics study. Computational Materials Science, 143, 418–424.

    Article  CAS  Google Scholar 

  17. Kurtoglu, M., et al. (2012). First principles study of two-dimensional early transition metal carbides. Mrs Communications, 2(4), 133–137.

    Article  CAS  Google Scholar 

  18. Xu, K., et al. (2016). Charging/discharging dynamics in two-dimensional titanium carbide (MXene) slit nanopore: Insights from molecular dynamic study. Electrochimica Acta, 196, 75–83.

    Article  CAS  Google Scholar 

  19. Xu, K., et al. (2018). Tracking ionic rearrangements and interpreting dynamic volumetric changes in two-dimensional metal carbide supercapacitors: A molecular dynamics simulation study. ChemSusChem, 11, 1892–1899.

    Article  CAS  Google Scholar 

  20. Lin, Z. F., et al. (2016). Electrochemical and in-situ X-ray diffraction studies of Ti3C2Tx MXene in ionic liquid electrolyte. Electrochemistry Communications, 72, 50–53.

    Article  CAS  Google Scholar 

  21. Jackel, N., et al. (2016). Electrochemical in situ tracking of volumetric changes in two-dimensional metal carbides (MXenes) in ionic liquids. ACS Applied Materials & Interfaces, 8(47), 32089–32093.

    Article  CAS  Google Scholar 

  22. Muckley, E. S., et al. (2017). Multimodality of structural, electrical, and gravimetric responses of intercalated MXenes to water. ACS Nano, 11(11), 11118–11126.

    Article  CAS  Google Scholar 

  23. Ding, L., et al. (2018). MXene molecular sieving membranes for highly efficient gas separation. Nature Communications, 9(1), 155.

    Article  CAS  Google Scholar 

  24. Rappe, A. K., et al. (1992). UFF, a full periodic-table force-field for molecular mechanics and molecular-dynamics simulations. Journal of the American Chemical Society, 114(25), 10024–10035.

    Article  CAS  Google Scholar 

  25. Kadantsev, E. S., et al. (2013). Fast and accurate electrostatics in metal organic frameworks with a robust charge equilibration parameterization for high-throughput virtual screening of gas adsorption. The Journal of Physical Chemistry Letters, 4(18), 3056–3061.

    Article  CAS  Google Scholar 

  26. Osti, N. C., et al. (2016). Effect of metal ion intercalation on the structure of MXene and water dynamics on its internal surfaces. ACS Applied Materials & Interfaces, 8(14), 8859–8863.

    Article  CAS  Google Scholar 

  27. Osti, N. C., et al. (2017). Influence of metal ions intercalation on the vibrational dynamics of water confined between MXene layers. Physical Review Materials, 1(6), 065406.

    Article  Google Scholar 

  28. Berdiyorov, G. R., & Mahmoud, K. A. (2017). Effect of surface termination on ion intercalation selectivity of bilayer Ti3C2T2 (T = F, O and OH) MXene. Applied Surface Science, 416, 725–730.

    Article  CAS  Google Scholar 

  29. Zhang, D. F., et al. (2017). Computational study of low interlayer friction in Tin+1Cn (n=1, 2, and 3) MXene. ACS Applied Materials & Interfaces, 9(39), 34467–34479.

    Article  CAS  Google Scholar 

  30. Hu, Q. K., et al. (2013). MXene: A new family of promising hydrogen storage medium. Journal of Physical Chemistry A, 117(51), 14253–14260.

    Article  CAS  Google Scholar 

  31. Hu, Q. K., et al. (2014). Two-dimensional Sc2C: A reversible and high-capacity hydrogen storage material predicted by first-principles calculations. International Journal of Hydrogen Energy, 39(20), 10606–10612.

    Article  CAS  Google Scholar 

  32. Zhang, Y. J., et al. (2016). Adsorption of uranyl species on hydroxylated titanium carbide nanosheet: A first-principles study. Journal of Hazardous Materials, 308, 402–410.

    Article  CAS  Google Scholar 

  33. Zhang, Y. J., et al. (2017). Theoretical insights into the uranyl adsorption behavior on vanadium carbide MXene. Applied Surface Science, 426, 572–578.

    Article  CAS  Google Scholar 

  34. Srivastava, P., et al. (2016). Mechanistic insight into the chemical exfoliation and functionalization of Ti3C2 MXene. ACS Applied Materials & Interfaces, 8(36), 24256–24264.

    Article  CAS  Google Scholar 

  35. Mishra, A., et al. (2016). Isolation of pristine MXene from Nb4AlC3 MAX phase: A first-principles study. Physical Chemistry Chemical Physics, 18(16), 11073–11080.

    Article  CAS  Google Scholar 

  36. Naguib, M., et al. (2014). 25th anniversary article: MXenes: A new family of two-dimensional materials. Advanced Materials, 26(7), 992–1005.

    Article  CAS  Google Scholar 

  37. Sun, D. D., et al. (2016). Structural transformation of MXene (V2C, Cr2C, and Ta2C) with O Groups during Lithiation: A first-principles investigation. ACS Applied Materials & Interfaces, 8(1), 74–81.

    Article  CAS  Google Scholar 

  38. Meng, Q. Q., et al. (2017). Theoretical prediction of MXene-like structured Ti3C4 as a high capacity electrode material for Na ion batteries. Physical Chemistry Chemical Physics, 19(43), 29106–29113.

    Article  CAS  Google Scholar 

  39. Guo, X., et al. (2016). High adsorption capacity of heavy metals on two-dimensional MXenes: An ab initio study with molecular dynamics simulation. Physical Chemistry Chemical Physics, 18(1), 228–233.

    Article  CAS  Google Scholar 

  40. Wang, G. (2016). Theoretical prediction of the intrinsic half-metallicity in surface-oxygen-passivated Cr2N MXene. Journal of Physical Chemistry C, 120(33), 18850–18857.

    Article  CAS  Google Scholar 

  41. Wang, G., & Liao, Y. (2017). Theoretical prediction of robust and intrinsic half-metallicity in Ni2N MXene with different types of surface terminations. Applied Surface Science, 426, 804–811.

    Article  CAS  Google Scholar 

  42. Aierken, Y., et al. (2018). MXenes/graphene heterostructures for Li battery applications: A first principles study. Journal of Materials Chemistry A, 6(5), 2337–2345.

    Article  CAS  Google Scholar 

  43. Xie, Y., et al. (2014). Role of surface structure on Li-ion energy storage capacity of two-dimensional transition-metal carbides. Journal of the American Chemical Society, 136(17), 6385–6394.

    Article  CAS  Google Scholar 

  44. Lv, X. S., et al. (2017). Sc2C as a promising anode material with high mobility and capacity: A first-principles study. Chemphyschem, 18(12), 1627–1634.

    Article  CAS  Google Scholar 

  45. Si, C., et al. (2016). Quantum spin Hall phase in Mo2M2C3O2 (M = Ti, Zr, Hf) MXenes. Journal of Materials Chemistry C, 4(48), 11524–11529.

    Article  CAS  Google Scholar 

  46. Ling, C. Y., et al. (2016). Transition metal-promoted V2CO2 (MXenes): A new and highly active catalyst for hydrogen evolution reaction. Advanced Science, 3(11), 1600180.

    Article  CAS  Google Scholar 

  47. Guo, Z. L., et al. (2016). MXene: A promising photocatalyst for water splitting. Journal of Materials Chemistry A, 4(29), 11446–11452.

    Article  CAS  Google Scholar 

  48. He, J. J., et al. (2016). High temperature spin-polarized semiconductivity with zero magnetization in two-dimensional Janus MXenes. Journal of Materials Chemistry C, 4(27), 6500.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adri van Duin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lotfi, R., Yilmaz, D.E., Vlcek, L., van Duin, A. (2019). Molecular Dynamics Simulations of MXenes: Ab Initio, Reactive, and Non-reactive Empirical Force Fields. In: Anasori, B., Gogotsi, Y. (eds) 2D Metal Carbides and Nitrides (MXenes). Springer, Cham. https://doi.org/10.1007/978-3-030-19026-2_9

Download citation

Publish with us

Policies and ethics