Skip to main content

MXenes for Sensors

  • Chapter
  • First Online:
2D Metal Carbides and Nitrides (MXenes)

Abstract

Active intercommunication between two different objects, whether it is person-to-person, person-to-robot, or person-to-environment, all begins with obtaining necessary information at the interface through sensing activities. Such information can be of various forms, being either mechanical forces such as pressure or strain, chemical interactions from gases or humidity, or various other physical and optical interactions. In order to obtain accurate information and properly respond to the surrounding environment, the precise and sensitive sensing is of paramount importance. The choice of material and engineering its structure play a large role in achieving this goal, due to the large variation between materials’ properties. Here, we will discuss the technical requirements in fabricating high-performance sensors and introduce several materials and their properties that have been utilized as sensing channels. Moreover, we will discuss the merits of MXenes over other materials and their potential to be used in various types of sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. United States Occupational Safety and Health Administration (OSHA) – www.osha.gov.

  2. Kearney, D. J., Hubbard, T., & Putnam, D. (2002). Breath ammonia measurement in Helicobacter pylori infection. Digestive Diseases and Sciences, 47(11), 2523–2530.

    Article  CAS  Google Scholar 

  3. Timmer, B., Olthuis, W., & Van Den Berg, A. (2005). Ammonia sensors and their applications—a review. Sensors and Actuators B: Chemical, 107(2), 666–677.

    Article  CAS  Google Scholar 

  4. Currie, L. A. (1995). Nomenclature in evaluation of analytical methods including detection and quantification capabilities. Pure & Applied Chemistry, 87(10), 1699–1723.

    Article  Google Scholar 

  5. Mirzaei, A., Leonardi, S. G., & Neri, G. (2016). Detection of hazardous volatile organic compounds (VOCs) by metal oxide nanostructures-based gas sensors: A review. Ceramics International, 42(14), 15119–15141.

    Article  CAS  Google Scholar 

  6. Sun, Y. F., Liu, S. B., Meng, F. L., Liu, J. Y., Jin, Z., Kong, L. T., & Liu, J. H. (2012). Metal oxide nanostructures and their gas sensing properties: A review. Sensors (Basel), 12(3), 2610–2631.

    Article  CAS  Google Scholar 

  7. Rothschild, A., & Komem, Y. (2004). The effect of grain size on the sensitivity of nanocrystalline metal-oxide gas sensors. Journal of Applied Physics, 95(11), 6374–6380.

    Article  CAS  Google Scholar 

  8. Zhang, J., Liu, X., Neri, G., & Pinna, N. (2016). Nanostructured materials for room-temperature gas sensors. Advanced Materials, 28(5), 795–831.

    Article  CAS  Google Scholar 

  9. Yoo, H. W., Cho, S. Y., Jeon, H. J., & Jung, H. T. (2015). Well-defined and high resolution Pt nanowire arrays for a high performance hydrogen sensor by a surface scattering phenomenon. Analytical Chemistry, 87(3), 1480–1484.

    Article  CAS  Google Scholar 

  10. Kahn, N., Lavie, O., Paz, M., Segev, Y., & Haick, H. (2015). Dynamic nanoparticle-based flexible sensors: Diagnosis of ovarian carcinoma from exhaled breath. Nano Letters, 15(10), 7023–7028.

    Article  Google Scholar 

  11. Shehada, N., Cancilla, J. C., Torrecilla, J. S., Pariente, E. S., Bronstrup, G., Christiansen, S., Johnson, D. W., Leja, M., Davies, M. P., Liran, O., Peled, N., & Haick, H. (2016). Silicon nanowire sensors enable diagnosis of patients via exhaled breath. ACS Nano, 10(7), 7047–7057.

    Article  CAS  Google Scholar 

  12. Liu, X., Ma, T., Pinna, N., & Zhang, J. (2017). Two-dimensional nanostructured materials for gas sensing. Advanced Functional Materials, 27, 1702168.

    Article  Google Scholar 

  13. Kim, J. S., Yoo, H. W., Choi, H. O., & Jung, H. T. (2014). Tunable volatile organic compounds sensor by using thiolated ligand conjugation on MoS2. Nano Letters, 14(10), 5941–5947.

    Article  CAS  Google Scholar 

  14. Robinson, J. T., Perkins, F. K., Snow, E. S., Wei, Z., & Sheehan, P. E. (2008). Reduced graphene oxide molecular sensors. Nano Letters, 8(10), 3137–3140.

    Article  CAS  Google Scholar 

  15. Anasori, B., Lukatskaya, M. R., & Gogotsi, Y. (2017). 2D metal carbides and nitrides (MXenes) for energy storage. Nature Reviews Materials, 2(2), 16098.

    Article  CAS  Google Scholar 

  16. Yu, X. F., Li, Y. C., Cheng, J. B., Liu, Z. B., Li, Q. Z., Li, W. Z., Yang, X., & Xiao, B. (2015). Monolayer Ti2CO2: A promising candidate for NH3 sensor or capturer with high sensitivity and selectivity. ACS Applied Materials & Interfaces, 7(24), 13707–13713.

    Article  CAS  Google Scholar 

  17. Xiao, B., Li, Y.-C., Yu, X.-F., & Cheng, J.-B. (2016). MXenes: Reusable materials for NH3 sensor or capturer by controlling the charge injection. Sensors and Actuators B: Chemical, 235, 103–109.

    Article  CAS  Google Scholar 

  18. Kim, S. J., Koh, H. J., Ren, C. E., Kwon, O., Maleski, K., Cho, S. Y., Anasori, B., Kim, C. K., Choi, Y. K., Kim, J., Gogotsi, Y., & Jung, H. T. (2018). Metallic Ti3C2Tx MXene gas sensors with ultrahigh signal-to-noise ratio. ACS Nano, 12, 986–993.

    Google Scholar 

  19. Lee, E., VahidMohammadi, A., Prorok, B. C., Yoon, Y. S., Beidaghi, M., & Kim, D. J. (2017). Room temperature gas sensing of two-dimensional titanium carbide (MXene). ACS Applied Materials & Interfaces, 9(42), 37184–37190.

    Article  CAS  Google Scholar 

  20. Cho, S. Y., Lee, Y., Koh, H. J., Jung, H., Kim, J. S., Yoo, H. W., Kim, J., & Jung, H. T. (2016). Superior chemical sensing performance of black phosphorus: Comparison with MoS2 and graphene. Advanced Materials, 28(32), 7020–7028.

    Article  CAS  Google Scholar 

  21. Cho, S. Y., Kim, S. J., Lee, Y., Kim, J. S., Jung, W. B., Yoo, H. W., Kim, J., & Jung, H. T. (2015). Highly enhanced gas adsorption properties in vertically aligned MoS2 layers. ACS Nano, 9(9), 9314–9321.

    Google Scholar 

  22. Anasori, B., Shi, C., Moon, E. J., Xie, Y., Voigt, C. A., Kent, P. R. C., May, S. J., Billinge, S. J. L., Barsoum, M. W., & Gogotsi, Y. (2016). Control of electronic properties of 2D carbides (MXenes) by manipulating their transition metal layers. Nanoscale Horizons, 1(3), 227–234.

    Article  CAS  Google Scholar 

  23. An, K. H., Jeong, S. Y., Hwang, H. R., & Lee, Y. H. (2004). Enhanced sensitivity of a gas sensor incorporating single-walled carbon nanotube–polypyrrole nanocomposites. Advanced Materials, 16(12), 1005–1009.

    Article  CAS  Google Scholar 

  24. Ma, Y., Liu, N., Li, L., Hu, X., Zou, Z., Wang, J., Luo, S., & Gao, Y. (2017). A highly flexible and sensitive piezoresistive sensor based on MXene with greatly changed interlayer distances. Nature Communications, 8(1), 1207.

    Article  Google Scholar 

  25. Cai, Y., Shen, J., Ge, G., Zhang, Y., Jin, W., Huang, W., Shao, J., Yang, J., & Dong, X. (2018). Stretchable Ti3C2Tx MXene/carbon nanotube composite based strain sensor with ultrahigh sensitivity and tunable sensing range. ACS Nano, 12(1), 56–62.

    Google Scholar 

  26. Xu, B., Zhu, M., Zhang, W., Zhen, X., Pei, Z., Xue, Q., Zhi, C., & Shi, P. (2016). Ultrathin MXene-micropattern-based field-effect transistor for probing neural activity. Advanced Materials, 28(17), 3333–3339.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Seon Joon Kim or Hee-Tae Jung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kim, S.J., Jung, HT. (2019). MXenes for Sensors. In: Anasori, B., Gogotsi, Y. (eds) 2D Metal Carbides and Nitrides (MXenes). Springer, Cham. https://doi.org/10.1007/978-3-030-19026-2_24

Download citation

Publish with us

Policies and ethics