Skip to main content

Radiation Dose and Dose Reconstruction in Conventional Paediatric Radiology

  • Chapter
Imaging Practice and Radiation Protection in Pediatric Radiology

Abstract

Radiation dosimetry is the science of determining the fraction of the energy which is absorbed in matter during interaction with ionizing radiation [5]. Due to the fact that children are much more sensitive to ionizing radiation than adults, radiation dosimetry may be considered as one of the most important topics in paediatric radiology. In this chapter, the fundamentals of radiation dosimetry against the background of paediatric radiology will be presented. Therefore, the description of radiation physics will be focus on clinical paediatric aspects. For a more physical description, see e.g. [1, 5, 14, 18, 54].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    SI = Système international d’unités.

  2. 2.

    The exponential attenuation law is due to the fact that the photo, Compton, and pair formation effects are stochastic effects occurring with a probability being proportional to the irradiated volume.

References

  1. Aichinger H, Dierker J, Joite-Barfuß S, Säbel M. Radiation exposure and image quality in x-ray diagnostic radiology. Heidelberg, Dordrecht, London, New York: Springer; 2012.. ISBN 978-3-642-11241-6

    Book  Google Scholar 

  2. Almén A, Mattsson S. On the calculation of effective dose in children and adolescents. J Radiol Prot. 1996;16:81–9.

    Article  Google Scholar 

  3. Alzen G, Benz-Bohm G. Radiation protection in pediatric radiology. Dtsch Arztebl. 2011;108:407–14.

    Google Scholar 

  4. Andreo P. Monte Carlo techniques in medical radiation physics. Phys Med Biol. 1992;36:861–920.

    Article  Google Scholar 

  5. Attix FH. Introduction to radiological physics and radiation dosimetry. New York, Chichester, Brisbane, Toronto, Singapore: Wiley; 1986.

    Book  Google Scholar 

  6. Australian Radiation Protection and Nuclear Safety Agency. Australian national paediatric diagnostic reference levels for MDCT. Australian Radiation Protection and Nuclear Safety Agency; 2012.

    Google Scholar 

  7. Bader D, Datz H, Bartal G, Juster AA, Marks K, Smolkin T, Zangen S, Kugelman A, Hoffmann C, Shani G, Ben-Shlomo A, Margaliot M, Sadetzki S. Unintentional exposure of neonates to conventional radiography in the neonatal intensive care units. J Perinatol. 2007;27:579–85.

    Article  PubMed  CAS  Google Scholar 

  8. Beninson D, Sowby D. Age and sex dependent weighting factors for medical irradiation. Radiat Prot Dosim. 1985;11:57–60.

    Google Scholar 

  9. Birch R, Marshall M. Computation of bremsstrahlung x-ray spectra and comparison with spectra measured with a Ge(Li) detector. Phys Med Biol. 1979;24:505–17.

    Article  PubMed  CAS  Google Scholar 

  10. Bohmann I. Ermittlung des Durchstrahlungsdurchmessers bei Säuglingen, Kindern und Jugendlichen zur Aufstellung von Belichtungswerten in der Röntgendiagnostik und Abschätzung der Organdosiswerte bei typischen Röntgenuntersuchungen. Dissertation, Universität München; 1990.

    Google Scholar 

  11. Bohmann I. Ermittlung des Durchstrahlungsdurchmessers bei Säuglingen, Kindern und Jugendlichen zur Aufstellung von Belichtungswerten in der Röntgendiagnostik und Abschätzung der Organdosiswerte bei typischen Röntgenuntersuchungen. GSF-Bericht 16/90; 1990.

    Google Scholar 

  12. Boone JM. The three parameters of equivalent spectra as an index of beam quality. Med Phys. 1988;15:304–10.

    Article  PubMed  CAS  Google Scholar 

  13. Bushberg JT, Seibert JA, Leidholdt EM, Boone JM. The essential physics of medical imaging: Lippincott Williams and Wilkins; 2012.

    Google Scholar 

  14. Carlsson GA, Carlsson CA. Effective energy in diagnostic radiology. A critical review. Phys Med Biol. 1984;29:953–8.

    Article  PubMed  CAS  Google Scholar 

  15. Commission of the European Communities. European guidelines on quality criteria for diagnostic radiographic images in paediatrics. EUR 16261, ISBN 92-827-7843-6; 1996.

    Google Scholar 

  16. Cristy M, Eckerman KF. Specific absorbed fractions of energy at various ages from internal photon sources. Oak Ridge National Laboratory, Health and Safety Research Division, ORNL/TM-8381/V1; 1987.

    Google Scholar 

  17. Dance DR, Christofides S, Maidment ADA, McLean ID, Ng KH, editors. Diagnostic radiology physics. A handbook for teachers and students. Vienna: International Atomic Energy Agency (IAEA); 2014. ISBN 978–92–131010–1.

    Google Scholar 

  18. Datz H, Ben-Shlomo A, Bader D, Sadetzki S, Juster-Reicher A, Marks K, Smolkin T, Zangen S, Margaliot M. The additional dose to radiosensitive organs caused by using under-collimated x-ray beams in neonatal intensive care radiography. Radiat Prot Dosim. 2008;130:518–24.

    Article  CAS  Google Scholar 

  19. Dell’Agnolo E, Seidenbusch M, Genzel-Boroviszeny O, Münch HG, Schneider K. Der Neugeborenen-Thorax I—Analyse von Feldgröße, Bildgüte und anderer Qualitätsparameter. Fortschr Röntgenstr. 2013;185:V30.

    Google Scholar 

  20. Deutsche Gesellschaft für Medizinische Physik. Pränatale Strahlenexposition aus medizinischer Indikation. Dosisermittlung, Folgerungen für Arzt und Schwangere. DGMP-Bericht Nr.7. Deutsche Gesellschaft für Medizinische Physik; 2002.

    Google Scholar 

  21. Deutsche Strahlenschutzkommission. Use of the effective dose in medical examinations. In: Veröffentlichungen der Strahlenschutzkommission, Band 41. Gustav Fischer Verlag; 1998. ISBN 3-437-21438-1.

    Google Scholar 

  22. Drexler G, Panzer W, Petoussi N, Zankl M. Effective dose—how effective for patients? Radiat Environ Biophys. 1993;32:209–19.

    Article  PubMed  CAS  Google Scholar 

  23. Fichtner C, Schneider K, Freidhof C, Endemann B, Horwitz AE, Kohn MM, Fendel H. Critical analysis of field size in chest x-rays of infants—a EC-wide survey in children’s clinics. Eur Radiol. 1993;Suppl 3:389.

    Google Scholar 

  24. Fritz S, Jones AK. Guidelines for anti-scatter grid use in pediatric digital radiography. Pediatr Radiol. 2014;44:313–21.

    Article  PubMed  Google Scholar 

  25. Galanski M, Nagel HD, Stamm G. Paediatric CT exposure practice in the federal republic of Germany: results of a nationwide survey in 2005–2006. Hannover: Medizinische Hochschule Hannover; 2007.

    Google Scholar 

  26. Golikov V, Barkovsky A, Wallström E, Cederblad A. A comparative study of organ doses assessment for patients undergoing conventional x-ray examinations: phantom experiments vs. calculations. Radiat Prot Dosim. 2018;178:223–34.

    Article  CAS  Google Scholar 

  27. Griebl G. Variation von Feldgröße und Dosis bei Röntgen-Thoraxaufnahmen beim 5 Jahre alten Kind—kritische Analyse einer Feldstudie in europäischen Kinderkliniken. Dissertation, Universität München; 2001.

    Google Scholar 

  28. Hart D, Wall BF, Shrimpton PC, Bungay DR, Dance DR. Reference doses and patient size in paediatric radiology. National Radiological Protection Board NRPB-R318; 2000. ISBN 0-85951-448-X.

    Google Scholar 

  29. Horwitz AE, Schweighofer-Berberich K, Schneider K, Kohn MM, Bakowski C, Stein E, Freidhof C, Fendel H. Selected image quality parameters in a survey using a test phantom in radiological departments and offices in the Federal Republic of Germany. Radiat Prot Dosim. 1993;49:79–82.

    Article  Google Scholar 

  30. Hoxter EA, Schenz A. Röntgenaufnahmetechnik. Siemens AG; 1991. ISBN 3-8009-1566-9.

    Google Scholar 

  31. Hubbell JH. Photon mass attenuation and energy-absorption coefficients from 1 keV to 20 MeV. Int J Appl Radiat Isot. 1982;33:1269–90.

    Google Scholar 

  32. Huda W. Kerma-area product in diagnostic radiology. AJR. 2014;203:W565–9.

    Article  PubMed  Google Scholar 

  33. International Atomic Energy Agency. Dosimetry in diagnostic radiology for paediatric patients. IAEA human health series no. 24; 2013.

    Google Scholar 

  34. International Atomic Energy Agency. Radiation protection in paediatric radiology. IAEA safety reports series no. 71; 2012.

    Google Scholar 

  35. International Commission on Radiological Protection. Report of the task group on reference man: anatomical, physiological and metabolic characteristics. ICRP publication 23. Oxford: Pergamon Press; 1975.

    Google Scholar 

  36. International Commission on Radiological Protection. 1990 recommendations of the International Commission on Radiological Protection, ICRP publication 60; 1991.

    Google Scholar 

  37. International Commission on Radiological Protection. Basic anatomical and physiological data for use in radiological protection: reference values. ICRP publication 89; 2003.

    Google Scholar 

  38. International Commission on Radiological Protection. The 2007 recommendations of the International Commission on Radiological Protection, ICRP publication 103; 2007.

    Google Scholar 

  39. Jacobi W. The concept of the effective dose—a proposal for the combination of organ doses. Radiat Environ Biophys. 1975;12:101–9.

    Article  PubMed  CAS  Google Scholar 

  40. Jones HE, Cunningham JR. The physics of radiology. Springfield: Charles C Thomas; 1981.

    Google Scholar 

  41. Klinzmann M. Qualitätsbeurteilung von Röntgenthoraxaufnahmen auf den pädiatrischen Intensivstationen in Abhängigkeit von den ausführenden Berufsgruppen. Dissertation, Justus-Liebig-Universität Gießen; 2015.

    Google Scholar 

  42. Löster W, Drexler G, Stieve FE. Die Messung des Dosisflächenproduktes in der diagnostischen Radiologie als Methode zur Ermittlung der Strahlenexposition. Berlin: Hoffmann; 1995.

    Google Scholar 

  43. Malusek A, Sandborg M, Carlsson GA. Accurate KAP meter calibration as a prerequisite for optimisation in projection radiography. Radiat Prot Dosim. 2016;169:353–9.

    Article  CAS  Google Scholar 

  44. Mettler FA, Davis M, Moseley RD, Kelsay CA. The effect of utilising age and sex dependent factors for calculating detriment from medical irradiation. Radiat Prot Dosim. 1986;15:269–71.

    CAS  Google Scholar 

  45. Petoussi-Henß N, Zankl M, Drexler G, Panzer W, Regulla D. Calculation of backscatter factors for diagnostic radiology using Monte Carlo methods. Phys Med Biol. 1998;43:2237–50.

    Article  PubMed  Google Scholar 

  46. Reich H. Dosimetrie ionisierender Strahlung. Stuttgart: Teubner; 1990.

    Google Scholar 

  47. Rogers DWO. Fifty years of Monte Carlo simulations for medical physics. Phys Med Biol. 2006;51:R287–301.

    Article  PubMed  CAS  Google Scholar 

  48. Šabič I, Ključevšek D, Thaler M, Žontar D. The effect of anti-scatter grid on radiation dose on chest radiography in children. Paediatr Today. 2016;12:75–80.

    Article  Google Scholar 

  49. Sandborg M, Dance DR, Carlsson GA, Persliden J. The choice of anti-scatter grids in diagnostic radiology: the optimization of image quality and absorbed dose. University of Linköping; 1993.

    Google Scholar 

  50. Schienkiewitz A, Schaffrath Rosario A, Dortschy R, Ellert U, Neuhauser H. German head circumference references for infants, children and adolescents in comparison with currently used national and international references. Acta Paediatr. 2011;100:e28–33.

    Article  PubMed  Google Scholar 

  51. Seidenbusch M, Kammer B, Specht T, Stahl R, Schneider K. Zur Rekonstruktion der Brustdrüsendosis bei Kindern in der pädiatrischen Radiologie: Gewicht, Dichte und Volumen der Mammagewebe bei Neugeborenen, säuglingen, Kleinkindern und Adoleszenten und die dosimetrischen Konsequenzen. Fortsch Röntgenstr. 2018;190:869–70.

    Google Scholar 

  52. Seidenbusch MC, Schneider K. Zur Strahlenexposition von Kindern in der pädiatrischen Radiologie. Anthropometrische Merkmale von Kindern und den zur Dosisrekonstruktion verwendeten mathematischen Phantomen (ISIMEP-Projekt des Bundesministeriums für Bildung und Forschung, Förderkennzeichen 02NUK016A). Fortschr Röntgenstr. 2012;184:A13.

    Article  Google Scholar 

  53. Seidenbusch MC, Schneider K. Strahlenhygienische Aspekte bei der Röntgenuntersuchung des Thorax. Radiologe. 2015;55:580–7.

    Article  PubMed  CAS  Google Scholar 

  54. Servomaa A, Rannikko S, Nikitin V, Golikov V, Ermakov I, Madarskyi L, Saltukova L. A topographically and anatomically unified phantom model for organ dose determination in radiation hygiene. STUK-A87. Helsinki: Finnish Centre for Radiation and Nuclear Safety; 1989.

    Google Scholar 

  55. Servomaa A, Tapiovaara M. Organ dose calculation in medical x-ray examinations by the program PCXMC. Radiat Prot Dosim. 1998;80:213–9.

    Article  Google Scholar 

  56. Soboleski D, Theriault C, Acker A. Unnecessary irradiation to non-thoracic structures during pediatric chest radiography. Pediatr Radiol. 2006;36:22–5.

    Article  PubMed  Google Scholar 

  57. Stollfuss J, Schneider K, Krüger-Stollfuss I. A comparative study of collimation in bedside chest radiography for preterm infants in two teaching hospitals. Eur J Radiol Open. 2015;2:118–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Tapiovaara M, Lakkisto M, Servomaa A. PCXMC. A PC-based Monte Carlo program for calculating patient doses in medical x-ray examinations. Finnish Centre for Radiation and Nuclear Safety, Säteilyturvakeskus (STUK), Report STUK A-139; 1997.

    Google Scholar 

  59. Tapiovaara M, Siiskonen T. PCXMC. A Monte Carlo program for calculating patient doses in medical x-ray examinations. Säteilyturvakeskus (STUK), Report STUK-A231; 2008.

    Google Scholar 

  60. Tschauner S, Marterer R, Gübitz M, Kalmar PI, Talakic E, Weissensteiner S, Sorantin E. European guidelines for ap/pa chest x-rays: routinely satisfiable in a paediatric radiology division? Eur Radiol. 2016;26:495–505.

    Article  PubMed  Google Scholar 

  61. Veit R, Zankl M. Influence of patient size on organ doses in diagnostic radiology. Radiat Prot Dosim. 1992;43:241–3.

    Article  CAS  Google Scholar 

  62. Veit R, Zankl M. Variation of organ doses in paediatric radiology due to patient diameter, calculated with phantoms of varying voxel size. Radiat Prot Dosim. 1993;49:353–6.

    Article  Google Scholar 

  63. Verordnung über den Schutz vor Schäden durch Röntgenstrahlen (Röntgenverordnung—RöV). BGBl. 1987;3:114–33.

    Google Scholar 

  64. White DR. The design and manufacture of anthropomorphic phantoms. Radiat Prot Dosim. 1993;49:359–69.

    Article  Google Scholar 

  65. Zankl M. Methods for assessing organ doses using computational models. Radiat Prot Dosim. 1998;80:207–12.

    Article  Google Scholar 

  66. Zeiss A. Feldgrößen- und Dosisvariation von Röntgen-Thorax-Aufnahmen beim zehnjährigen Kind—kritische Analyse einer Feldstudie in europäischen Kinderkliniken. Dissertation, Universität München; 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Cite this chapter

Seidenbusch, M., Rösenberger, V., Schneider, K. (2019). Radiation Dose and Dose Reconstruction in Conventional Paediatric Radiology. In: Imaging Practice and Radiation Protection in Pediatric Radiology. Springer, Cham. https://doi.org/10.1007/978-3-030-18504-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-18504-6_4

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-18502-2

  • Online ISBN: 978-3-030-18504-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics