Skip to main content

Analyzing Cancer and Breast Cancer in Space and Time

  • Chapter
  • First Online:
Geospatial Approaches to Energy Balance and Breast Cancer

Part of the book series: Energy Balance and Cancer ((EBAC,volume 15))

  • 426 Accesses

Abstract

This chapter introduces concepts central to the space-time analysis of cancer and breast cancer in space and time. By “space” we mean geographic location; by time we mean when specific events occurred. We deal with cancer at both the individual- and population-level, and are concerned with quantifying individual exposures through space and time, and the assessment of space-time patterns in cancer outcomes in groups of individuals and in populations. We begin by setting the stage with a discussion of the complexity of the problem, and consider factors including carcinogenesis, models of cancer progression, cancer latency, biological vulnerability, temporal orientation in space-time cancer analysis, and human mobility. Next, specific methods for space-time pattern recognition for mobile individuals are summarized, followed by specific examples for pancreatic, breast and bladder cancers. Sources of error are discussed, with an emphasis on actual exposure measurement for individuals in comparison to model-based estimates. It is suggested that model- and GIS-based estimates substantially underestimate actual exposures, resulting in exposure misclassification and under-estimation of cancer burdens attributable to environmental exposures. Next, future research directions that leverage advances in the mutational signatures for cancers and improved measurement technologies for quantifying the cancer exposome over the life course are identified. The chapter concludes with critical challenges and barriers in the realization of a genome+, exposome, behavome synthesis for cancer prevention and a more complete causal understanding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abe T, Martin IB, Roche LM. Clusters of census tracts with high proportions of men with distant-stage prostate cancer incidence in New Jersey, 1995–1999. Am J Prev Med. 2006;30(2 Suppl):S60–6.

    Article  PubMed  Google Scholar 

  2. Abe T, Stinchcomb D. Geocoding practices in cancer registries. In: Rushton G, Armstrong MP, Gittler J, et al., editors. Geocoding health data. Boca Raton: CRC Press; 2008. p. 111–25.

    Google Scholar 

  3. Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SAJR, Behjati S, Biankin AV, Bignell GR, Bolli N, Borg A, Børresen-Dale A-L, Boyault S, Burkhardt B, Butler AP, Caldas C, Davies HR, Desmedt C, Eils R, Eyfjörd JE, Foekens JA, Greaves M, Hosoda F, Hutter B, Ilicic T, Imbeaud S, Imielinski M, Jäger N, Jones DTW, Jones D, Knappskog S, Kool M, Lakhani SR, López-Otín C, Martin S, Munshi NC, Nakamura H, Northcott PA, Pajic M, Papaemmanuil E, Paradiso A, Pearson JV, Puente XS, Raine K, Ramakrishna M, Richardson AL, Richter J, Rosenstiel P, Schlesner M, Schumacher TN, Span PN, Teague JW, Totoki Y, Tutt ANJ, Valdés-Mas R, van Buuren MM, van’t Veer L, Vincent-Salomon A, Waddell N, Yates LR, Genome IAPC, Consortium IBC, Consortium IM-S, PedBrain I, Zucman-Rossi J, Futreal PA, McDermott U, Lichter P, Meyerson M, Grimmond SM, Siebert R, Campo E, Shibata T, Pfister SM, Campbell PJ, Stratton MR. Signatures of mutational processes in human cancer. Nature. 2013a;500:415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Alexandrov LB, Nik-Zainal S, Wedge DC, Campbell PJ, Stratton MR. Deciphering signatures of mutational processes operative in human cancer. Cell Rep. 2013b;3(1):246–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Baastrup Nordsborg R, Meliker JR, Kjaer Ersboll A, Jacquez GM, Raaschou-Nielsen O. Space-time clustering of non-hodgkin lymphoma using residential histories in a Danish case-control study. PLoS One. 2013;8(4):e60800.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Bell ML, Banerjee G, Pereira G. Residential mobility of pregnant women and implications for assessment of spatially-varying environmental exposures. J Expo Sci Environ Epidemiol. 2018;28(5):470–80.

    Article  PubMed  Google Scholar 

  7. Ben-Shlomo Y, Kuh D. A life course approach to chronic disease epidemiology: conceptual models, empirical challenges and interdisciplinary perspectives. Int J Epidemiol. 2002;31(2):285–93.

    Article  PubMed  Google Scholar 

  8. Blackadar CB. Historical review of the causes of cancer. World J Clin Oncol. 2016;7(1):54–86.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Campbell PJ, Yachida S, Mudie LJ, Stephens PJ, Pleasance ED, Stebbings LA, Morsberger LA, Latimer C, McLaren S, Lin M-L, McBride DJ, Varela I, Nik-Zainal SA, Leroy C, Jia M, Menzies A, Butler AP, Teague JW, Griffin CA, Burton J, Swerdlow H, Quail MA, Stratton MR, Iacobuzio-Donahue C, Futreal PA. The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature. 2010;467(7319):1109–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chaix B. Mobile sensing in environmental health and neighborhood research. Annu Rev Public Health. 2018;39(1):367–84.

    Article  PubMed  Google Scholar 

  11. Cogliano VJ, Baan R, Straif K, Grosse Y, Lauby-Secretan B, El Ghissassi F, Bouvard V, Benbrahim-Tallaa L, Guha N, Freeman C, Galichet L, Wild CP. Preventable exposures associated with human cancers. J Natl Cancer Inst. 2011;103(24):1827–39.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Cuzick J, Edwards R. Spatial clustering for inhomogeneous populations. J R Stat Soc Ser B. 1990;52(1):73–104.

    Google Scholar 

  13. Danysh HE, Mitchell LE, Zhang K, Scheurer ME, Lupo PJ. Differences in environmental exposure assignment due to residential mobility among children with a central nervous system tumor: Texas, 1995–2009. J Expo Sci Environ Epidemiol. 2015;27:41.

    Article  PubMed  Google Scholar 

  14. Diniz-Filho JAF, Bini LM. Thirty-five years of spatial autocorrelation analysis in population genetics: an essay in honour of Robert Sokal (1926–2012). Biol J Linn Soc. 2012;107(4):721–36.

    Article  Google Scholar 

  15. Foulds LJCR. The experimental study of tumor progression: a review. Cancer Res. 1954;14(5):327–39.

    CAS  PubMed  Google Scholar 

  16. Friedewald WF, Rous PJJOEM. The initiating and promoting elements in tumor production: an analysis of the effects of tar, benzpyrene, and methylcholanthrene on rabbit skin. 1944;80(2):101–26.

    Google Scholar 

  17. Garcia E, Hurley S, Nelson DO, Gunier RB, Hertz A, Reynolds P. Evaluation of the agreement between modeled and monitored ambient hazardous air pollutants in California. Int J Environ Health Res. 2014;24(4):363–77.

    Article  CAS  PubMed  Google Scholar 

  18. Garcia E, Hurley S, Nelson DO, Hertz A, Reynolds PJEH. Hazardous air pollutants and breast cancer risk in California teachers: a cohort study. Environ Health. 2015;14(1):14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. George BJ, Schultz BD, Palma T, Vette AF, Whitaker DA, Williams RW. An evaluation of EPA’s National-Scale Air Toxics Assessment (NATA): comparison with benzene measurements in Detroit, Michigan. Atmos Environ. 2011;45(19):3301–8.

    Article  CAS  Google Scholar 

  20. Goldberg D. A geocoding best practices guide. Springfield: North American Association of Central Cancer Registries; 2008.

    Google Scholar 

  21. Goldenholz DM, Goldenholz SR, Krishnamurthy KB, Halamka J, Karp B, Tyburski M, Wendler D, Moss R, Preston KL, Theodore W. Using mobile location data in biomedical research while preserving privacy. J Am Med Inform Assoc. 2018;25(10):1402–6.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Goovaerts P, Jacquez GM. Accounting for regional background and population size in the detection of spatial clusters and outliers using geostatistical filtering and spatial neutral models: the case of lung cancer in Long Island, New York. Int J Health Geogr. 2004;3(1):14.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Goovaerts P, Jacquez GM. Detection of temporal changes in the spatial distribution of cancer rates using local Moran’s I and geostatistically simulated spatial neutral models. J Geogr Syst. 2005;7(1):137–59.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Gregorio DI, Kulldorff M, Barry L, Samocuik H, Zarfos K. Geographical differences in primary therapy for early-stage breast cancer. Ann Surg Oncol. 2001;8(10):844–9.

    Article  CAS  PubMed  Google Scholar 

  25. Griffith DA, Millones M, Vincent M, Johnson DL, Hunt A. Impacts of positional error on spatial regression analysis: a case study of address locations in syracuse, New York. Trans GIS. 2007;11(5):655–79.

    Article  Google Scholar 

  26. Herceg ZJM. Characterizing the epigenome and exposome in evaluating environmental exposures and cancer risk. Mutagenesis. 2014;29(6):500.

    Google Scholar 

  27. Hurley S, Andrew H, Nelson David O, Layefsky M, Von Behren J, Bernstein L, Deapen D, Reynolds P. Practice of epidemiology tracing a path to the past: exploring the use of commercial credit reporting data to construct residential histories for epidemiologic studies of environmental exposures. Am J Epidemiol. 2017;185(3)

    Google Scholar 

  28. Hertz-Picciotto I, Adams-Campbell L, Devine P, Eaton D, Hammond S, Helzlsouer K, Hiatt R, Hughes-Halbert C, Hunter D, Kramer B, Langholz B, Reynolds P, Tsuji J, Walker C, Zeise L. Breast cancer and the environment: a life course approach. Washington, DC: Institute of Medicine; 2011.

    Google Scholar 

  29. Jacquez GM. Cuzick and Edwards’ test when exact locations are unknown. Am J Epidemiol. 1994;140(1):58–64.

    Article  CAS  PubMed  Google Scholar 

  30. Jacquez GM. Current practices in the spatial analysis of cancer: flies in the ointment. Int J Health Geogr. 2004;3(1):22.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Jacquez GM. A research agenda: does geocoding positional error matter in health GIS studies? Spat Spatio Temporal Epidemiol. 2012;3(1):7–16.

    Article  Google Scholar 

  32. Jacquez GM, Barlow J, Rommel R, Kaufmann A, Rienti M Jr, AvRuskin G, Rasul J. Residential mobility and breast cancer in Marin County, California, USA. Int J Environ Res Public Health. 2014;11(1):271–95.

    Article  Google Scholar 

  33. Jacquez GM, Kaufmann A, Meliker J, Goovaerts P, AvRuskin G, Nriagu J. Global, local and focused geographic clustering for case-control data with residential histories. Environ Health. 2005;4(1):4.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Jacquez GM, Sabel CE, Shi C. Genetic GIScience: toward a place-based synthesis of the genome, exposome, and behavome. Ann Assoc Am Geogr. 2015a;105(3):454–72.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Jacquez GM, Shi C, Meliker JR. Local bladder cancer clusters in Southeastern michigan accounting for risk factors, covariates and residential mobility. PLoS One. 2015b;10(4):e0124516.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Jelleyman T, Spencer N. Residential mobility in childhood and health outcomes: a systematic review. J Epidemiol Community Health. 2008;62(7):584–92.

    Article  CAS  PubMed  Google Scholar 

  37. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69–90.

    Article  PubMed  Google Scholar 

  38. Juarez PD, Matthews-Juarez P. Applying an Exposome-wide (ExWAS) approach to cancer research. Front Oncol. 2018;8:313.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kanwal R, Gupta K, Gupta S. Cancer epigenetics: an introduction. Methods Mol Biol. 2015;1238:3–25.

    Article  PubMed  Google Scholar 

  40. Korycinski RW, Tennant BL, Cawley MA, Bloodgood B, Oh AY, Berrigan DJCC. Geospatial approaches to cancer control and population sciences at the United States cancer centers. Cancer Causes Control. 2018;29(3):371–7.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Krieger N, Waterman P, Lemieux K, Zierler S, Hogan J. On the wrong side of the tracts? Evaluating the accuracy of geocoding in public health research. Am J Public Health. 2001;91:1114–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kuh D, Ben-Shlomo Y. A life course approach to chronic disease epidemiology: tracing the origins of ill-health from early to later life. Oxford: Oxford University Press; 1997.

    Google Scholar 

  43. Kulldorff M. A spatial scan statistic. Commun Stat. 1997;26:1481–96.

    Article  Google Scholar 

  44. Kulldorff M, SaTScan v4.0: software for the spatial and space-time scan statistics., Information Management Services, 2004.

    Google Scholar 

  45. Kulldorff M, Nagarwalla N. Spatial disease clusters: detection and inference. Stat Med. 1995;14(8):799–810.

    Article  CAS  PubMed  Google Scholar 

  46. Loh M, Sarigiannis D, Gotti A, Karakitsios S, Pronk A, Kuijpers E, Annesi-Maesano I, Baiz N, Madureira J, Oliveira Fernandes E, Jerrett M, Cherrie J. How sensors might help define the external exposome. Int J Environ Res Public Health. 2017;14(4):434.

    Article  PubMed Central  Google Scholar 

  47. McDonald YJ, Schwind M, Goldberg DW, Lampley A, Wheeler CM. An analysis of the process and results of manual geocode correction. Geospat Health. 2017;12(1):526.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Meade MS. Medical geography as human ecology: the dimension of population movement. Geogr Rev. 1977;67:379–93.

    Article  Google Scholar 

  49. Meliker J, Goovaerts P, Jacquez G, Nriagu J. Incorporating individual-level distributions of exposure error in epidemiologic analyses: an example using arsenic in drinking water and bladder cancer. Ann Epidemiol. 2011;. (in Press)

    Google Scholar 

  50. Meliker J, Slotnick M, AvRuskin G, Schottenfeld D, Jacquez G, Wilson M, Goovaerts P, Franzblau A, Nriagu J. Lifetime exposure to arsenic in drinking water and bladder cancer: a population-based case-control study in michigan. Cancer Causes Control. 2010a;21:745–57.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Meliker JR, Goovaerts P, Jacquez GM, Nriagu JO. Incorporating individual-level distributions of exposure error in epidemiologic analyses: an example using arsenic in drinking water and bladder cancer. Ann Epidemiol. 2010b;20(10):750–8.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Meliker JR, Jacquez GM. Space-time clustering of case-control data with residential histories: insights into empirical induction periods, age-specific susceptibility, and calendar year-specific effects. Stoch Environ Res Risk Assess. 2007;21(5):625–34.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Meliker JR, Jacquez GM, Goovaerts P, Copeland G, Yassine M. Spatial cluster analysis of early stage breast cancer: a method for public health practice using cancer registry data. Cancer Causes Control. 2009;20(7):1061–9.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Meliker JR, Sloan CD. Spatio-temporal epidemiology: principles and opportunities. Spat Spatio Temporal Epidemiol. 2011;2(1):1–9.

    Article  Google Scholar 

  55. Möller S, Mucci LA, Harris JR, Scheike T, Holst K, Halekoh U, Adami H-O, Czene K, Christensen K, Holm NVJCE, Biomarkers P. The heritability of breast cancer among women in the Nordic twin study of cancer. Cancer Epidemiol Biomark Prev. 2016;25(1):145–50.

    Article  Google Scholar 

  56. Morawska L, Thai PK, Liu X, Asumadu-Sakyi A, Ayoko G, Bartonova A, Bedini A, Chai F, Christensen B, Dunbabin M, Gao J, Hagler GSW, Jayaratne R, Kumar P, Lau AKH, Louie PKK, Mazaheri M, Ning Z, Motta N, Mullins B, Rahman MM, Ristovski Z, Shafiei M, Tjondronegoro D, Westerdahl D, Williams R. Applications of low-cost sensing technologies for air quality monitoring and exposure assessment: how far have they gone? Environ Int. 2018;116:286–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mucci LA, Hjelmborg JB, Harris JR, Czene K, Havelick DJ, Scheike T, Graff RE, Holst K, Möller S, Unger RHJJ. Familial risk and heritability of cancer among twins in Nordic countries. JAMA. 2016;315(1):68–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Neilson HK, Farris MS, Stone CR, Vaska MM, Brenner DR, Friedenreich CM. Moderate-vigorous recreational physical activity and breast cancer risk, stratified by menopause status: a systematic review and meta-analysis. Menopause. 2017;24(3):322–44.

    Article  PubMed  Google Scholar 

  59. Neveu V, A Moussy, H Rouaix, R Wedekind, A Pon, C Knox, DS Wishart and AJNAR Scalbert. Exposome-explorer: a manually-curated database on biomarkers of exposure to dietary and environmental factors. gkw980, (2016).

    Google Scholar 

  60. Nielsen CC, Amrhein CG, Osornio-Vargas AR. Mapping outdoor habitat and abnormally small newborns to develop an ambient health hazard index. Int J Health Geogr. 2017;16(1):43.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Nik-Zainal S, Morganella S. Mutational signatures in breast cancer: the problem at the DNA level. Clin Cancer Res. 2017;23(11):2617–29.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Nordsborg RB, Meliker JR, Ersbøll AK, Jacquez GM, Poulsen AH, Raaschou-Nielsen O. Space-time clusters of breast cancer using residential histories: a Danish case–control study. BMC Cancer. 2014;14(1):255.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Nuckols J, Airola M, Colt J, Johnson A, Schwenn M, Waddell R, Karagas M, Silverman D, Ward MH. The impact of residential mobility on exposure assessment in cancer epidemiology. Epidemiology. 2009;20(6):S259–60.. 210.1097/1001.ede.0000362867.0000379502.0000362820

    Article  Google Scholar 

  64. Oliver WN, Matthews K, Siadaty M, Hauck F, Pickle L. Geographic bias relating to geocoding error in epidemiologic studies. Int J Health Geogr. 2005;4(29):29.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Payne-Sturges DC, Burke TA, Breysse P, Diener-West M, Buckley TJ. Personal exposure meets risk assessment: a comparison of measured and modeled exposures and risks in an urban community. Environ Health Perspect. 2004;112(5):589–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Peltomäki P. Role of DNA mismatch repair defects in the pathogenesis of human cancer. J Clin Oncol Off J Am Soc Clin Oncol. 2003;21(6):1174–9.

    Article  CAS  Google Scholar 

  67. Pickle LW, Waller LA, Lawson AB. Current practices in cancer spatial data analysis: a call for guidance. Int J Health Geogr. 2005;4(1):3.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Poulsen HE, Prieme H, Loft S. Role of oxidative DNA damage in cancer initiation and promotion. Eur. J. Cancer Prev. 1998;7(1):9–16.

    CAS  PubMed  Google Scholar 

  69. Prüss-Üstün A, Neira M. Preventing disease through healthy environments: a global assessment of the burden of disease from environmental risks. Geneva: World Health Organization; 2016.

    Google Scholar 

  70. Roche LM, Skinner R, Weinstein RB. Use of a geographic information system to identify and characterize areas with high proportions of distant stage breast cancer. J Public Health Manag Pract. 2002;8(2):26–32.

    Article  PubMed  Google Scholar 

  71. Roongpiboonsopit D, Karimi HA. Quality assessment of online street and rooftop geocoding services. Cartogr Geogr Inf Sci. 2010;37:301–18.

    Article  Google Scholar 

  72. Rothmann K, Greenland S. Modern epidemiology. Philadelphia: Lippincott-Raven; 1998.

    Google Scholar 

  73. Rushton G, Armstrong M, Gittler J, Greene B, Pavlik C, West M, Zimmerman D. Geocoding in cancer research – A review. Am J Prev Med. 2006;30(2):S16–24.

    Article  PubMed  Google Scholar 

  74. Rushton G, Peleg I, Banerjee A, Smith G, West M. Analyzing geographic patterns of disease incidence: rates of late-stage colorectal cancer in iowa. J Med Syst. 2004;28:223–36.

    Article  PubMed  Google Scholar 

  75. Schmiedel S, Jacquez GM, Blettner M, Schuz J. Spatial clustering of leukemia and type 1 diabetes in children in Denmark. Cancer Causes Control. 2011;22(6):849–57.

    Article  PubMed  Google Scholar 

  76. Siddharthan, A., N. Cherbuin, P. J. Eslinger, K. Kozlowska, N. A. Murphy and Leroy Lowe (2018). WordNet-feelings: a linguistic categorisation of human feelings.

    Google Scholar 

  77. Sloan CD, Baastrup-Norstrom R, Jacquez GM, Landrigan PJ, Raaschou-Nielsen O, Meliker JR. Space-time analysis of testicular cancer clusters using residential histories: a case-control study in Denmark. PLoS ONE. 2013;. In Press

    Google Scholar 

  78. Sloan CD, Jacquez GM, Gallagher CM, Ward MH, Raaschou-Nielsen O, Nordsborg RB, Meliker JR. Performance of cancer cluster Q-statistics for case-control residential histories. Spat Spatio Temporal Epidemiol. 2012;3(4):297–310.

    Article  Google Scholar 

  79. Sokal RR, Wartenberg DE. A test of spatial autocorrelation analysis using an isolation-by-distance model. Genetics. 1983;105(1):219–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Strum M, Scheffe R. National review of ambient air toxics observations. J Air Waste Manage Assoc. 2016;66(2):120–33.

    Article  CAS  Google Scholar 

  81. Symanski E, Tee Lewis PG, Chen T-Y, Chan W, Lai D, Ma X. Air toxics and early childhood acute lymphocytic leukemia in Texas, a population based case control study. Environ Health. 2016;15(1):70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Thomas A, Carlin BP. Late detection of breast and colorectal cancer in Minnesota counties: an application of spatial smoothing and clustering. Stat Med. 2003;22(1):113–27.

    Article  PubMed  Google Scholar 

  83. Tomczak K, Czerwińska P, Wiznerowicz M. The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge. Contemp Oncol. 2015;19(1A):A68.

    Google Scholar 

  84. Tunstall H, Pickett KE, Dorling D. Residential histories and contemporary mortality geography: using data linkage to develop a data set describing mobility between birth and death. J Epidemiol Community Health. 2010;64:A56–7.

    Article  Google Scholar 

  85. USGCRP, R. In: Avery CW, Easterling DR, Kunkel KE, Lewis KLM, Maycock TK, Stewart BC, editors. Impacts, risks, and adaptation in the United States: fourth national climate assessment, Volume II. Washington, DC: U.S. Global Change Research Program; 2018.

    Google Scholar 

  86. Waller LA, Jacquez GM. Disease models implicit in statistical tests of disease clustering. Epidemiology. 1995;6(6):584–90.

    Article  CAS  PubMed  Google Scholar 

  87. Wheeler DC, Wang A. Assessment of residential history generation using a public-record database. Int J Environ Res Public Health. 2015;12(9):11670–82.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Wild C. Complementing the genome with an “exposome”: the outstanding challenge of environmental exposure measurement in molecular epidemiology. Cancer Epidemiol Biomark Prev. 2005;14(8):1847–50.

    Article  CAS  Google Scholar 

  89. Wild CP. The exposome: from concept to utility. Int J Epidemiol. 2012;41(1):24–32.

    Article  PubMed  Google Scholar 

  90. Yachida S, Jones S, Bozic I, Antal T, Leary R, Fu B, Kamiyama M, Hruban RH, Eshleman JR, Nowak MA, Velculescu VE, Kinzler KW, Vogelstein B, Iacobuzio-Donahue CA. Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature. 2010;467(7319):1114–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Zandbergen PA, Hart TC, Lenzer KE, Camponovo ME. Error propagation models to examine the effects of geocoding quality on spatial analysis of individual-level datasets. Spat Spat Temporal Epidemiol. 2011;. (In Review)

    Google Scholar 

  92. Zhou N, Yuan Y, Long X, Wu C, Bao J. Mutational signatures efficiently identify different mutational processes underlying cancers with similar somatic mutation spectra. Mutat Res Fundam Mol Mech Mutagen. 2017;806:27–30.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffrey M. Jacquez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jacquez, G.M. (2019). Analyzing Cancer and Breast Cancer in Space and Time. In: Berrigan, D., Berger, N. (eds) Geospatial Approaches to Energy Balance and Breast Cancer. Energy Balance and Cancer, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-030-18408-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-18408-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-18407-0

  • Online ISBN: 978-3-030-18408-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics