Skip to main content

Halophytic Salt Load in Relation to Rumen Osmolality, Microbial Activity, and Animal Performance

  • Living reference work entry
  • First Online:
Handbook of Halophytes

Abstract

Feeding halophytes imposes certain constraints to the animals because they have extraordinary concentrations of salts as well as plant secondary metabolites. The salt contents of halophytes may run up to 40% or more. Of these constraints is the elevated ruminal osmotic pressure which may cause impaired animal performance. Increased osmotic pressure in the rumen may affect rumen function through the alteration of rumen environment. This may lead to changes in microbial community count and relative proportions of microorganisms, ruminal pH, volatile fatty acid production, and ammonia concentrations. These effects result in modified rumen function. Impaired function of microbial community leads to decreased digestibilities of nutrients. Rumen pH decreases linearly as osmotic pressure increases. Elevated osmolality may cause the permeability of the rumen wall to increase. Raising rumen tonicity normally stimulates voluntary water intake, thus leading to decreased feed intake and increased rumen passage rate. Increased osmotic pressure and changed ruminal pH may cause the epithelial layer of the rumen to shed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ahrens, F. A. (1967). Histamine, lactic acid and hypertonicity as factors in the development of rumenitis in cattle. American Journal of Veterinary Research, 28, 1335–1342.

    CAS  PubMed  Google Scholar 

  • Alonso, A. N. (1979). Diagnostic analysis of rumen fluid. In The veterinary clinics of North America (Large animal practice). Symposium on gastroenterology (pp. 363–376). Philadelphia: W. B. Saunders.

    Google Scholar 

  • Attia-Ismail, S. A. (2008). Role of minerals in halophyte feeding to ruminants. In: M.N.V. Prasad (ed.). Trace Elements: Nutritional Benefits, Environmental Contamination, and Health Implications. John Wiley & Sons, Inc.

    Google Scholar 

  • Attia-Ismail, S. A. (2016). Rumen physiology under high salt stress. In H. M. El Shaer & V. R. Squires (Eds.), Halophytic and salt tolerant feedstuffs: Impacts on nutrition, physiology and reproduction of livestock. New York: CRC Press.

    Google Scholar 

  • Attia-Ismail, S. A., Fayed, A. M., & Fahmy, A. A. (2003). Some mineral, nitrogen and water utilization of salt plant fed sheep as affected by monensin. Egyptian Journal of Nutrition and Feeds, 6, 151–161.

    Google Scholar 

  • Baile, C. A., & Mayer, J. (1969). Depression of feed intake of goats by metabolites injected during meals. American Journal of Physiology, 217, 1830–1836.

    Article  CAS  Google Scholar 

  • Beede, D. K. (2006). Evaluation of water quality and nutrition for dairy cattle. American Dairy Science Association, Champaign, 260–271.

    Google Scholar 

  • Beede, D. K. (2009). Solving bad water problems for thirsty cows. In Proceedings – Western dairy management conference (pp. 217–225). Reno.

    Google Scholar 

  • Bennink, M. R., Tyler, T. R., Ward, G. M., & Johnson, D. E. (1978). Ionic milieu of bovine and ovine rumen as affected by diet. International Journal of Dairy Science, 61, 315–323.

    Article  CAS  Google Scholar 

  • Bergen, W. G. (1972). Rumen osmolality as a factor in feed intake control of sheep. Journal of Animal Science, 34, 1054–1060.

    Article  CAS  Google Scholar 

  • Bunn, C. R., & matrone. G. (1972). Purified diets for ruminants. Nutr Abst Rev, 42, 435–444.

    Google Scholar 

  • Burk, A., & Dehority. (1991). Rumen Microbiology, Ohio Agricultural research and Development center. Wooster: The Ohio State University. 44691–4096.

    Google Scholar 

  • Carr, D. H. (1984). The regulation of parotid and submaxillar salivary secretion in sheep. Quarterly Journal of Experimental Physiology, 69, 587–597.

    Article  CAS  Google Scholar 

  • Carter, R. R., & Grovum, W. L. (1990). A review of the physiological significance of hypertonic body fluids on feed intake and ruminal function: Salivation, motility and microbes. Journal of Animal Science, 68, 2811–2832.

    Article  CAS  Google Scholar 

  • Degen, A. A., & Squires, V. R. (2016). The rumen and its adaptation to salt. In H. M. El Shaer & V. R. Squires (Eds.), Halophytic and salt tolerant feedstuffs: Impacts on nutrition, physiology and reproduction of livestock. New York: CRC Press.

    Google Scholar 

  • Dehority, B. A., & Males, J. R. (1974). Rumen fluid osmolality: Evaluation of its influence upon the occurrence and numbers of holotrich protozoa in sheep. Journal of Animal Science, 38, 865.

    Article  CAS  Google Scholar 

  • Dobson, A., Sellers, A. F., & Gatewood, V. H. (1976). Absorption and exchange of water across rumen epithelium. American Journal of Physiology, 231, 1588–1594.

    Article  CAS  Google Scholar 

  • Engelhardt, W. V. (1970). Movement of water across the rumen epithelium. In A. T. Phillipson (Ed.), Physiology of digestion and metabolism in the ruminant (pp. 132–146). Newcastle-upon-Tyne: Oriel Press.

    Google Scholar 

  • Engelhardt, W. V. & Hauffe, R. (1975). Role of the omasum in the absorption and secretion of water and electrolytes in sheep and goats. In Digestion and Metabloism in the ruminant, pp. 216–230 (I. W. McDonald and A.C.I. Warner, editors). Armidale: University of New England Publishing Unit.

    Google Scholar 

  • Galip, N. (2006). Effect of supplemental yeast culture and sodium bicarbonate on ruminal fermentation and blood variables in rams. Journal of Animal Physiology and Animal Nutrition (Berl), 90(11–12), 446–452.

    Article  CAS  Google Scholar 

  • Garg, S. L., & Nangia, O. P. (1993). Dietary effect of inclusion of sodium chloride on dilution rate and rumen fermentation in buffaloes. Indian Journal of Animal Sciences, 63, 309–317.

    CAS  Google Scholar 

  • Gihad, E. A. (1993). Utilization of high salinity tolerant plants and saline water by desert animals. In H. Lieth & A. Al-Masoom (Eds.), Towards the rational use of high salinity tolerant plant (Vol. 1, pp. 445–447). Dordecht: Klumer Academic Publishers.

    Google Scholar 

  • Grovum, W. L., & Bignell, W. W. (1989). Results refuting volatile fatty acids per se as signals of satiety in ruminants. Proceedings of the Nutrition Society, 48, 3A.

    Google Scholar 

  • Grunberg, W., & Constable, P. D. (2009). Function and Dysfunction of the Ruminant Forestomach (5th ed., pp. 12–19). Food Animal Practice. https://doi.org/10.1016/B978-141603591-6.10006-5.

  • Harrison, D. J., Beever, D. E., Thomson, D. J., & Osbourn, D. F. (1975). Manipulation of rumen fermentation in sheep by increasing the rate of flow of water from the rumen. Journal of Agricultural Science, Cambridge, 85, 93–101.

    Article  Google Scholar 

  • Hovell, F. D. D., Orsksov, E. R., Kyle, D. J., & Macleod, N. A. (1987). Undernutrition in sheep. Nitrogen repletion by N-depleted sheep. British Journal of Nutrition, 57, 77–88.

    Article  CAS  Google Scholar 

  • Idris, O. F. & El-Shami, M. J. (1990). Natural resources of camel feeding in Sudan. 1- trees, shrubs and forbs and their nutritive value. Symposium Animal science divisions in the Arab universities, and workshop on development of camel production. March 4–7, 1990. United Arab Emirates (Arabic).

    Google Scholar 

  • Kato, S., Sasaki, Y., & Tsuda, T. (1979). Food intake and rumen osmolality in the sheep. Annales de Recherches Veterinaire, 10, 229–230.

    CAS  Google Scholar 

  • Kellems, R. O., & Church, D. C. (2002). Livestock feeds and feeding. Upper Saddle River: Prentice Hall.

    Google Scholar 

  • Kewan, K. Z (2003). Studies on Camel nutrition Ph.D. Thesis, Faculty of Agriculture, Alexandria University, Egypt.

    Google Scholar 

  • Koffman, M. (1938). Lantbrukshogskol. Ann. 5, 201- 247. Cited by Hungate, 1966.

    Google Scholar 

  • Lopez, S., Hovell, B., & Macleod, N. A. (1994). Osmotic pressure, water kinetics and volatile fatty acid absorption in the rumen of sheep sustained by intragastric infusion. British Journal of Nutrition, 71, 153–168.

    Google Scholar 

  • Mackie, R. I., & Therion, J. J. (1984). Influence of mineral interactions on growth efficiency of rumen bacteria. In F. M. C. Gilchrist & R. I. Mackie (Eds.), Herbivore nutrition (pp. 455–477). Sourth Africa: The Science Press (Pty) Ltd..

    Google Scholar 

  • Okeke, G. C. (1978). Rumen hypertonicity: Effect on fermentation in vitro and measurement in vivo. Ph.D. Dissertation. University of Guelph, Ontario.

    Google Scholar 

  • Phillip, L. E., Buchanan-Smith, J. G., & Grovum, W. L. (1981). Food intake and ruminal osmolality in sheep: Differentiation of the effect of osmolality from that of the products of maize silage fermentation. The Journal of Agricultural Science, Cambridge, 96, 439–445.

    Article  CAS  Google Scholar 

  • Preeti, N. K., Kundu, S. S., & Sharma, A. (2018). Effect of saline water on rumen fermentation and serum profile in Murrah male calves. Indian Journal of Animal Sciences, 52(1), 65–71.

    Google Scholar 

  • Puri, J. P., & Garg, S. K. (2001). Effect of osmotic agent supplementation in the diet of buffalo on some rumen functions and blood electrolytes. Indian Journal of Animal Sciences, 71(10), 927–931.

    CAS  Google Scholar 

  • Richard R. C., & Grovum W. L. (1990). A review of the physiological significance of hypertonic Body Fluids on Feed intake and Ruminal Function: Salivation, Molitlity and Microbes. J Anim Sci, 68, 2811–2832.

    Google Scholar 

  • Rogers, J. A., & Davis, C. L. (1982). Effects of intraruminal infusion of mineral salts on volatile fatty acid production in steers fed high- grain and high- roughage diets. Journal of Dairy Science, 65, 953–962.

    Article  CAS  Google Scholar 

  • Rogers, J. A., Marks, B. C., Davis, C. L., & Clark, J. H. (1979). Alteration of rumen fermentation in steers by increasing rumen fluid dilution rate with mineral salts. Journal of Dairy Sciences, 65, 1599–1605.

    Article  Google Scholar 

  • Scott, D. (1975). Changes in mineral, water and acid-base balance associated with feeding and diet. In I. W. McDonald & A. C. I. Warner (Eds.), Digestion and me/ubolism in the ruminant (pp. 205–215). Armidale: University of New England Publishing Unit.

    Google Scholar 

  • Shawket, S. M., Farid, M. F. A. & Ahmed, M. H. (1985). Effect of drinking saline well water on sheep. II. Rumen function and the rumen protozoal population. 1st Int. Cong. Anim. Prod. In Arid Zones. 7–14 Sep., Domascus.

    Google Scholar 

  • Silanikove, N., & Tadmor, A. (1989). Rumen volume, saliva flow rate, and systematic fluid homeostasis in dehydrated cattle. American Journal of Physiology, 256, R809–R815.

    CAS  PubMed  Google Scholar 

  • Slyter, L. L. (1976). Influence of acidosis on rumen function. Journal of Animal Science, 43, 910–929.

    Article  CAS  Google Scholar 

  • Stacy, B. D., & Warner, A. C. I. (1972). Comparative Biochemistry and Physiology, 43A, 637.

    Article  Google Scholar 

  • Ternouth, J. H., & Beattie. (1971). Studies of the food intake of sheep at a single meal Br. The Journal of Nutrition, 25, 153.

    Article  CAS  Google Scholar 

  • Ulyatt, M. J., Waghorn, G. C., John, A., Reid, C. S. W., & Monro, J. (1984). Effect of intake and feeding frequency on feeding behavior and quantitative aspects of digestion in sheep fed chaffed lucerne hay. Journal of Agricultural Science Cambridge, 102, 645–657.

    Google Scholar 

  • Warner, A. C. I., & Stacy, B. D. (1965). Solutes in the rumen of the sheep. Quarterly Journal of Experimental Physiology, 50, 169–184.

    Article  CAS  Google Scholar 

  • Warner, A. C. I., & Stacy, B. D. (1972). Water, sodium and potassium movements across the rumen wall of sheep. Quarterly Journal of Experimental Physiology, 57, 103–119.

    Google Scholar 

  • Wilson, A. D. (1966). The tolerance of sheep to sodium chloride in food or drinking water. Australian Journal of Agricultural Research, 17, 503.

    Article  CAS  Google Scholar 

  • Wilson, A. D. (1975). Influence of water salinity on sheep performance while grazing on natural grassland and saltbush pastures. Australian Journal of Experimental Agriculture & Animal Husbandry, 15, 760–765.

    Article  Google Scholar 

  • Zembayashi, M. (1974). Studies on the effects of minerals on the activities of rumen micro-organisms. Thesis, Kytoto Univ.

    Google Scholar 

  • Zhao, G. Y., Duric, M., Macleod, N. A., Ï•rskov, E. R., Deb-Hovell, F. D., & Feng, Y. L. (1995). The use of intragastric nutrition to study saliva secretion and the relationship between rumen osmotic pressure and water transport. British Journal of Nutrition, 73, 155–161.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Youssef, K.M., Attia-Ismail, S.A. (2020). Halophytic Salt Load in Relation to Rumen Osmolality, Microbial Activity, and Animal Performance. In: Grigore, MN. (eds) Handbook of Halophytes. Springer, Cham. https://doi.org/10.1007/978-3-030-17854-3_110-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-17854-3_110-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-17854-3

  • Online ISBN: 978-3-030-17854-3

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics