Skip to main content

Learning Progressions and Competence Models: A Comparative Analysis

  • Chapter
  • First Online:
Bridging Research and Practice in Science Education

Abstract

This chapter contributes to ongoing debates about approaches to modeling student learning. By providing a basis for individual diagnoses, such models can foster teaching that is responsive to students’ learning needs. In addition, these models can inform the development of standards and curricula and advance theory and research about student learning. This chapter highlights two approaches to modeling student learning: learning progressions (from the United States) and competence models (from German-speaking contexts). Taking into account the cultural context of both approaches, we identify similarities and differences with regard to selected criteria: kinds of models, model structure, application to teaching and learning, and evaluation through research. We illustrate our comparisons using a learning progression and a competence model describing students’ learning about models and modeling in science education. The use of learning progressions and competence models in their respective contexts, for both research and practice, suggests that there are important insights that researchers from each tradition can learn through deeper understanding of the other in order to explore and foster student learning. Our efforts to clarify the meaning and contributions of the two approaches, with respect to each other, will help to foster communication across the international science education community.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alonzo, A. C. (2011). Learning progressions that support formative assessment practices. Measurement: Interdisciplinary Research and Perspectives, 9(2–3), 124–129. https://doi.org/10.1080/15366367.2011.599629.

    Article  Google Scholar 

  • Alonzo, A. C., & Elby, A. (2019). Beyond empirical adequacy: Learning progressions as models and their value for teachers. Cognition and Instruction, 37, 1–37. https://doi.org/10.1080/07370008.2018.1539735.

    Article  Google Scholar 

  • Aufschnaiter, C. v., & Hofmann, J. (2014). Competence and knowledge - mutual relationships and consequences for lesson planning. Der mathematische und naturwissenschaftliche Unterricht (MNU), 67(1), 10–16.

    Google Scholar 

  • Bamberger, Y. M., & Davis, E. A. (2013). Middle-school science students’ scientific modelling performances across content areas and within a learning progression. International Journal of Science Education, 35(2), 213–238. https://doi.org/10.1080/09500693.2011.624133.

    Article  Google Scholar 

  • Berliner Rahmenlehrplan. (2014). Landesinstitut für Schule und Medien Berlin-Brandenburg. https://bildungsserver.berlin-brandenburg.de/rlp-online/cfaecher/biologie/kompetenzentwicklung/. Assessed 2 July 2019

  • Burke, K. (2006). From standards to rubrics in 6 steps. Heatherton: Hawker Brownlow.

    Google Scholar 

  • Clement, J. J., & Rea-Ramirez, M. A. (Eds.). (2008). Model based learning and instruction in science (Vol. 2). Dordrecht: Springer. https://doi.org/10.1007/978-1-4020-6494-4.

    Book  Google Scholar 

  • Corcoran, T. B., Mosher, F. A., & Rogat, A. (2009). Learning progressions in science: An evidence-based approach to reform (CPRE Research Report #RR-63). Philadelphia: Consortium for Policy Research in Education. https://doi.org/10.12698/cpre.2009.rr63.

    Book  Google Scholar 

  • Crawford, B., & Cullin, M. (2005). Dynamic assessments of preservice teachers’ knowledge of models and modeling. In K. Boersma, M. Goedhart, O. de Jong, & H. Eijkelhof (Eds.), Research and the quality of science education (pp. 309–323). Dordrecht: Springer. https://doi.org/10.1007/1-4020-3673-6_25.

    Chapter  Google Scholar 

  • Fleige, J., Seegers, A., Upmeier zu Belzen, A., & Krüger, D. (Eds.). (2012): Modeling competence in biology education in grades 7–10. Making phenomena tangible – in 11 elaborated lessons. Donauwörth: Auer Verlag.

    Google Scholar 

  • Gilbert, J. K., & Justi, R. (2016). Modelling-based teaching in science education (Vol. 9). Cham: Springer. https://doi.org/10.1007/978-3-319-29039-3.

    Book  Google Scholar 

  • Gilbert, J. K., & Osborne, R. (1980). The use of models in science and science teaching. International Journal of Science Education, 2(1), 3–13. https://doi.org/10.1080/0140528800020103.

    Article  Google Scholar 

  • Gogolin, S., & Krüger, D. (2017). Diagnosing students’ understanding of the nature of models. Research in Science Education, 47(5), 1127–1149. https://doi.org/10.1007/s11165-016-9551-9.

    Article  Google Scholar 

  • Gotwals, A. W. (2012). Learning progressions for multiple purposes: Challenges in using learning progressions. In A. C. Alonzo & A. W. Gotwals (Eds.), Learning progressions in science: Current challenges and future directions (pp. 461–472). Rotterdam: Sense Publishers. https://doi.org/10.1007/978-94-6091-824-7_19.

    Chapter  Google Scholar 

  • Gotwals, A. W., & Songer, N. B. (2010). Reasoning up and down a food chain: Using an assessment framework to investigate students’ middle knowledge. Science Education, 94(2), 259–281. https://doi.org/10.1002/sce.20368.

    Article  Google Scholar 

  • Gouvea, J. S., & Passmore, C. (2017). ‘Models of’ versus ‘models for.’ Science & Education, 26(1–2), 49–63. https://doi.org/10.1007/s11191-017-9884-4.

    Article  Google Scholar 

  • Grosslight, L., Unger, C., Jay, E., & Smith, C. L. (1991). Understanding models and their use in science: Conceptions of middle and high school students and experts. Journal of Research in Science Teaching, 28(9), 799–822. https://doi.org/10.1002/tea.3660280907.

    Article  Google Scholar 

  • Grünkorn, J., Lotz, A., & Terzer, E. (2014a). Assessing modeling competence in biology education. Mathematischer und Naturwissenschaftlicher Unterricht, 67(3), 132–138.

    Google Scholar 

  • Grünkorn, J., Upmeier zu Belzen, A., & Krüger, D. (2014b). Assessing students’ understandings of biological models and their use in science to evaluate a theoretical framework. International Journal of Science Education, 36(10), 1651–1684. https://doi.org/10.1080/09500693.2013.873155.

    Article  Google Scholar 

  • Günther, S. L., Fleige, J., Upmeier zu Belzen, A., & Krüger, D. (2019). Using the case method to foster preservice biology teachers’ content knowledge (CK) and pedagogical content knowledge (PCK) related to models and modeling. Journal of Science Teacher Education. https://doi.org/10.1080/1046560X.2018.1560208.

    Article  Google Scholar 

  • Hammer, D., & Sikorski, T.-R. (2015). Implications of complexity for research on learning progressions. Science Education, 99(3), 424–431. https://doi.org/10.1002/sce.21165.

    Article  Google Scholar 

  • Hodson, D. (2014). Learning science, learning about science, doing science: Different goals demand different learning methods. International Journal of Science Education, 36(15), 2534–2553. https://doi.org/10.1080/09500693.2014.899722.

    Article  Google Scholar 

  • Klieme, E., & Hartig, J. (2008). Concepts of competence in the social sciences and in the educational discourse. In M. Prenzel, I. Gogolin, & H.-H. Krüger (Eds.), Kompetenzdiagnostik: Zeitschrift für Erziehungswissenschaft (Sonderheft 8/2007) (pp. 11–29). Wiesbaden: Springer. https://doi.org/10.1007/978-3-531-90865-6.

    Chapter  Google Scholar 

  • Klieme, E., Hartig, J., & Rauch, D. (2008). The concept of competence in educational contexts. In J. Hartig, E. Klieme, & D. Leutner (Eds.), Assessment of competencies in educational contexts (pp. 3–23). Göttingen: Hogrefe.

    Google Scholar 

  • Koeppen, K., Hartig, J., Klieme, E., & Leutner, D. (2008). Current issues in competence modeling and assessment. Zeitschrift für Psychologie [Journal of Psychology], 216, 61–73. https://doi.org/10.1027/0044-3409-216.2.61.

    Article  Google Scholar 

  • Krajcik, J. S. (2012). The importance, cautions and future of learning progression research. In A. C. Alonzo & A. W. Gotwals (Eds.), Learning progressions in science: Current challenges and future directions (pp. 27–36). Rotterdam: Sense Publishers. https://doi.org/10.1007/978-94-6091-824-7_3.

    Chapter  Google Scholar 

  • Krell, M. (2013). How students understand biological models: Assessing and describing secondary school students’ meta-modeling knowledge (Dissertation). Berlin: Logos.

    Google Scholar 

  • Krell, M., Upmeier zu Belzen, A., & Krüger, D. (2016). Modellkompetenz im Biologieunterricht [modeling competence in biology education]. In A. Sandmann & P. Schmiemann (Eds.), Biologiedidaktische Forschung. Schwerpunkte und Forschungsgegenstände (pp. 83–102). Berlin: Logos.

    Google Scholar 

  • Krüger, D., Kauertz, A., & Upmeier zu Belzen, A. (2018). Standards-based competence modeling in natural science of lower secondary levels. In D. Krüger, I. Parchmann & H. Schecker (Hrsg.), Theorien in der naturwissenschaftsdidaktischen Forschung (pp. 141–157). Springer.

    Google Scholar 

  • Mahr, B. (2011). On the epistemology of models. In G. Abel & J. Conant (Eds.), Rethinking epistemology (pp. 301–352). Berlin: De Gruyter.

    Chapter  Google Scholar 

  • Martin, M. O., Mullis, I. V. S., Foy, P., & Stanco, G. M. (2012). TIMSS 2011. International results in science. Amsterdam: International Association for the Evaluation of Educational Achievement (IEA).

    Google Scholar 

  • Mathesius, S., Hartmann, S., Upmeier zu Belzen, A., & Krüger, D. (2016). Scientific reasoning as an aspect of pre-service biology teacher education: Assessing competencies using a paper-pencil test. In T. Tal & A. Yarden (Eds.), The future of biology education research (pp. 93–110). Haifa: The Technion, Israel Institute of Technology/The Weizmann Institute of Science.

    Google Scholar 

  • National Research Council. (2007). Taking science to school: Learning and teaching science in grades K-8. Washington, DC: The National Academies Press. https://doi.org/10.17226/11625.

    Book  Google Scholar 

  • NGSS Lead States. (2013). Next generation science standards: For states, by states. Washington, DC: The National Academies Press. https://doi.org/10.17226/18290.

    Book  Google Scholar 

  • Nicolaou, C. T., & Constantinou, C. P. (2014). Assessment of the modeling competence: A systematic review and synthesis of empirical research. Educational Research Review, 13, 52–73. https://doi.org/10.1016/jedurev.2014.10.001.

    Article  Google Scholar 

  • OECD. (2000). Measuring student knowledge and skills: The PISA 2000 assessment of reading, mathematical and scientific literacy. Paris: Organisation for Economic Co-operation and Development.

    Book  Google Scholar 

  • Oh, P. S., & Oh, S. J. (2011). What teachers of science need to know about models. International Journal of Science Education, 33(8), 1109–1130. https://doi.org/10.1080/09500693.2010.502191.

    Article  Google Scholar 

  • Passmore, C., Gouvea, J. S., & Giere, R. (2014). Models in science and in learning science: Focusing scientific practice on sense-making. In M. Matthews (Ed.), International handbook of research in history, philosophy and science teaching (pp. 1171–1202). Dordrecht: Springer. https://doi.org/10.1007/978-94-007-7654-8_36.

    Chapter  Google Scholar 

  • Patzke, C, Krüger, D., & Upmeier zu Belzen, A. (2013). Development of students’ understanding of models and modelling in biology education – A longitudinal study with students aged 13–16. Proceedings of the 10th European Science Education Research Association (ESERA).

    Google Scholar 

  • Reusser, K. (2014). Competence orientation as a guiding concept in didactics. Beiträge zur Lehrerinnen- und Lehrerbildung, 32(3), 325–339.

    Google Scholar 

  • Ropohl, M., Nielsen, J. A., Olley, C., Rönnebeck, S., & Stables, K. (2018). The concept of competence and its relevance for science, technology and mathematics education. In J. Dolin & R. Evans (Eds.), Transforming assessment (pp. 3–25). Cham: Springer. https://doi.org/10.1007/978-3-319-63248-3_1.

    Chapter  Google Scholar 

  • Schecker, H., & Parchmann, I. (2006). Modeling of scientific competence. Zeitschrift für Didaktik der Naturwissenschaften, 12, 45–66.

    Google Scholar 

  • Schmidt, W. H., Wang, H. C., & McKnight, C. C. (2005). Curriculum coherence: An examination of U.S. mathematics and science content standards from an international perspective. Journal of Curriculum Studies, 37(5), 525–559. https://doi.org/10.1080/0022027042000294682.

    Article  Google Scholar 

  • Schwarz, C. V., Reiser, B. J., Davis, E. A., Kenyon, L., Achér, A., Fortus, D., Shwartz, Y., Hug, B., & Krajcik, J. (2009). Developing a leaming progression for scientific modeling: Making scientific modeling accessible and meaningful for learners. Journal of Research in Science Teaching, 46(6), 632–654. https://doi.org/10.1002/tea.20311.

    Article  Google Scholar 

  • Schwarz, C. V., Reiser, B. J., Achér, A., Kenyon, L., & Fortus, D. (2012). MoDeLS. In A. C. Alonzo & A. W. Gotwals (Eds.), Learning progressions in science: Current challenges and future directions (pp. 101–137). Rotterdam: Sense Publishers. https://doi.org/10.1007/978-94-6091-824-7_6.

    Chapter  Google Scholar 

  • Sekretariat der Ständigen Konferenz der Kultusminister der Länder in der BRD (KMK) (Ed.). (2005). Bildungsstandards im Fach Biologie für den Mittleren Schulabschluss [biology education standards for the Mittlere Schulabschluss]. München/Neuwied: Wolters Kluwer.

    Google Scholar 

  • Sikorski, T.-R., & Hammer, D. (2010). A critique of how learning progressions research conceptualizes sophistication and progress. In K. Gomez, L. Lyons, & J. Radinsky (Eds.), ICLS ´10 Proceedings of the 9th International Conference of the Learning Science (pp. 1032–1039). Chicago: International Society of the Learning Sciences.

    Google Scholar 

  • Smith, C. L., Wiser, M., Anderson, C. W., & Krajcik, J. (2006). Implications of research on children’s learning for standards and assessment: A proposed learning progression for matter and the atomic-molecular theory. Measurement: Interdisciplinary Research and Perspectives, 4(1–2), 1–98. https://doi.org/10.1080/15366367.2006.9678570.

    Article  Google Scholar 

  • Songer, N. B., Kelcey, B., & Gotwals, A. W. (2009). How and when does complex reasoning occur? Empirically driven development of a learning progression focused on complex reasoning about biodiversity. Journal of Research in Science Teaching, 46(6), 610–631. https://doi.org/10.1002/tea.20313.

    Article  Google Scholar 

  • Terzer, E. (2013). Modeling competences in the context of biology education - empirical description of modeling competences using multiple-choice items (Dissertation). http://www.edoc.hu-berlin.de/dissertationen/terzer-eva-2012-12-19/PDF/terzer.pdf. Accessed 28 May 2018.

  • Terzer, E., Hartig, J., & Upmeier zu Belzen, A. (2013). Systematic construction of a modeling competence test in biology education taking into account quality criteria [Developing systematically a test of model competence in biology education taking account of quality criteria]. Zeitschrift für Didaktik der Naturwissenschaften, 19, 51–76.

    Google Scholar 

  • Upmeier zu Belzen, A., & Krüger, D. (2010). Modeling competence in biology education [Model competence in biology teaching]. Zeitschrift für Didaktik der Naturwissenschaften, 16, 41–57.

    Google Scholar 

  • Weinert, F. E. (2001). Concept of competence: A conceptual clarification. In D. S. Rychen & L. H. Salganik (Eds.), Defining and selecting key competencies (pp. 45–65). Kirkland: Hogrefe.

    Google Scholar 

  • Wilson, M. (2009). Measuring progressions: Assessment structures underlying a learning progression. Journal of Research in Science Teaching, 46(6), 716–730. https://doi.org/10.1002/tea.20318.

    Article  Google Scholar 

  • Wiser, M., Smith, C. L., & Doubler, S. (2012). Learning progressions as tools for curriculum development: Lessons from the inquiry project. In A. C. Alonzo & A. W. Gotwals (Eds.), Learning progressions in science: Current challenges and future directions (pp. 359–403). Rotterdam: Sense Publishers. https://doi.org/10.1007/978-94-6091-824-7_16.

    Chapter  Google Scholar 

  • Zlatkin-Troitschanskaia, O., Pant, H. A., Lautenbach, C., Molerov, D., Toepper, M., & Brückner, S. (2017). Modeling and measuring competencies in higher education – Approaches to challenges in higher education policy and practice. Wiesbaden: Springer. https://doi.org/10.1007/978-3-658-15486-8.

    Book  Google Scholar 

Download references

Acknowledgments

This chapter is based upon work supported by the US National Science Foundation (Grant No. DRL-1253036) and the Bundesministerium für Bildung und Forschung (Grant No. 01JG0906, 0lJGl072). Any opinions, findings, and conclusions or recommendations expressed in this chapter are those of the authors and do not necessarily reflect the views of the funding agencies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annette Upmeier zu Belzen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Upmeier zu Belzen, A., Alonzo, A.C., Krell, M., Krüger, D. (2019). Learning Progressions and Competence Models: A Comparative Analysis. In: McLoughlin, E., Finlayson, O.E., Erduran, S., Childs, P.E. (eds) Bridging Research and Practice in Science Education. Contributions from Science Education Research, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-030-17219-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-17219-0_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-17218-3

  • Online ISBN: 978-3-030-17219-0

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics