Skip to main content

Understanding Endotoxin and β-Glucan Contamination in Nanotechnology-Based Drug Products

  • Chapter
  • First Online:
Endotoxin Detection and Control in Pharma, Limulus, and Mammalian Systems

Abstract

Nanotechnology is increasingly used to formulate small molecules, biologics, and nucleic acid-based therapeutics. The attention to this technology is drawn by a variety of benefits including but not limited to the improved circulation time, reduced toxicity and the ability to target tissues and cells of interest. Clinical translation of nanotechnology-based drug products requires, among other investigations, the evaluation for the potential contamination with bacterial endotoxins. In the process of evaluating the safety of nanotechnology-based drug products, screening for additional microbial contaminants, such as beta-glucans, is an emerging new field. Herein, we will provide a general overview of the nanotechnology field and review challenges with estimating endotoxin and beta-glucan contamination in nanoparticle-based drug products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. National-Nanotechnology-Initiative. Defition of Nanotechnology. https://www.nano.gov/nanotech-101/what/definition.

  2. US FDA. Considering whether an FDA-regulated product involves the application of nanotechnology. 2014.

    Google Scholar 

  3. Gao Y, et al. China and the United States–global partners, competitors and collaborators in nanotechnology development. Nanomedicine. 2016;12(1):13–9. https://doi.org/10.1016/j.nano.2015.09.007.

    Article  CAS  PubMed  Google Scholar 

  4. He X, Hwang HM. Nanotechnology in food science: functionality, applicability, and safety assessment. J Food Drug Anal. 2016;24(4):671–81. https://doi.org/10.1016/j.jfda.2016.06.001.

    Article  CAS  PubMed  Google Scholar 

  5. Hofmann-Amtenbrink M, Hofmann H, Hool A, Roubert F. Nanotechnology in medicine: European research and its implications. Swiss Med Wkly. 2014;144:w14044. https://doi.org/10.4414/smw.2014.14044.

    Article  PubMed  Google Scholar 

  6. Padovani GC, et al. Advances in dental materials through nanotechnology: facts, perspectives and toxicological aspects. Trends Biotechnol. 2015;33(11):621–36. https://doi.org/10.1016/j.tibtech.2015.09.005.

    Article  CAS  PubMed  Google Scholar 

  7. Panahi Y, et al. Recent advances on liposomal nanoparticles: synthesis, characterization and biomedical applications. Artif Cells Nanomed Biotechnol. 2017;45(4):788–99. https://doi.org/10.1080/21691401.2017.1282496.

    Article  PubMed  Google Scholar 

  8. Sonkaria S, Ahn SH, Khare V. Nanotechnology and its impact on food and nutrition: a review. Recent Pat Food Nutr Agric. 2012;4(1):8–18.

    Article  CAS  PubMed  Google Scholar 

  9. Tapia-Hernandez JA, et al. Micro- and nanoparticles by electrospray: advances and applications in foods. J Agric Food Chem. 2015;63(19):4699–707. https://doi.org/10.1021/acs.jafc.5b01403.

    Article  CAS  PubMed  Google Scholar 

  10. Cumming S. Nanotechnology sees big growth in products and applications, Reports BCC Research. BCC Research. 2017. https://globenewswire.com/news-release/2017/01/17/906164/0/en/Nanotechnology-Sees-Big-Growth-in-Products-and-Applications-Reports-BCC-Research.html.

  11. Etheridge ML, et al. The big picture on nanomedicine: the state of investigational and approved nanomedicine products. Nanomedicine. 2013;9(1):1–14. https://doi.org/10.1016/j.nano.2012.05.013.

    Article  CAS  PubMed  Google Scholar 

  12. D’Mello SR, et al. The evolving landscape of drug products containing nanomaterials in the United States. Nat Nanotechnol. 2017;12(6):523–9. https://doi.org/10.1038/nnano.2017.67.

    Article  CAS  PubMed  Google Scholar 

  13. Dobrovolskaia MA, Germolec DR, Weaver JL. Evaluation of nanoparticle immunotoxicity. Nat Nanotechnol. 2009;4(7):411–4. https://doi.org/10.1038/nnano.2009.175.

    Article  CAS  PubMed  Google Scholar 

  14. Dobrovolskaia MA, McNeil SE. Immunological properties of engineered nanomaterials. Nat Nanotechnol. 2007;2(8):469–78. https://doi.org/10.1038/nnano.2007.223.

    Article  CAS  PubMed  Google Scholar 

  15. Deci MB, Liu M, Dinh QT, Nguyen J. Precision engineering of targeted nanocarriers. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2018. https://doi.org/10.1002/wnan.1511.

    PubMed  Google Scholar 

  16. Parodi A, et al. Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like functions. Nat Nanotechnol. 2013;8(1):61–8. https://doi.org/10.1038/nnano.2012.212.

    Article  CAS  PubMed  Google Scholar 

  17. Rodriguez PL, et al. Minimal "Self" peptides that inhibit phagocytic clearance and enhance delivery of nanoparticles. Science. 2013;339(6122):971–5. https://doi.org/10.1126/science.1229568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Brand W, et al. Nanomedicinal products: a survey on specific toxicity and side effects. Int J Nanomedicine. 2017;12:6107–29. https://doi.org/10.2147/ijn.s139687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dobrovolskaia MA. Pre-clinical immunotoxicity studies of nanotechnology-formulated drugs: challenges, considerations and strategy. J Control Release. 2015;220(Pt B):571–83. https://doi.org/10.1016/j.jconrel.2015.08.056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dobrovolskaia MA, et al. Dendrimer-induced leukocyte procoagulant activity depends on particle size and surface charge. Nanomedicine (Lond). 2012;7(2):245–56. https://doi.org/10.2217/nnm.11.105.

    Article  CAS  Google Scholar 

  21. Dobrovolskaia MA, Vogel SN. Toll receptors, CD14, and macrophage activation and deactivation by LPS. Microbes Infect. 2002;4(9):903–14.

    Article  CAS  PubMed  Google Scholar 

  22. Donnell ML, Lyon AJ, Mormile MR, Barua S. Endotoxin hitchhiking on polymer nanoparticles. Nanotechnology. 2016;27(28):285601. https://doi.org/10.1088/0957-4484/27/28/285601.

    Article  CAS  PubMed  Google Scholar 

  23. Ilinskaya AN, et al. Inhibition of phosphoinositol 3 kinase contributes to nanoparticle-mediated exaggeration of endotoxin-induced leukocyte procoagulant activity. Nanomedicine (Lond). 2014;9(9):1311–26. https://doi.org/10.2217/nnm.13.137.

    Article  CAS  Google Scholar 

  24. Hamilton RF, et al. Particle length-dependent titanium dioxide nanomaterials toxicity and bioactivity. Part Fibre Toxicol. 2009;6:35. https://doi.org/10.1186/1743-8977-6-35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Inoue K. Promoting effects of nanoparticles/materials on sensitive lung inflammatory diseases. Environ Health Prev Med. 2011;16(3):139–43. https://doi.org/10.1007/s12199-010-0177-7.

    Article  CAS  PubMed  Google Scholar 

  26. Inoue K, Takano H. Aggravating impact of nanoparticles on immune-mediated pulmonary inflammation. ScientificWorldJournal. 2011;11:382–90. https://doi.org/10.1100/tsw.2011.44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Inoue K, et al. Effects of inhaled nanoparticles on acute lung injury induced by lipopolysaccharide in mice. Toxicology. 2007;238(2–3):99–110. https://doi.org/10.1016/j.tox.2007.05.022.

    Article  CAS  PubMed  Google Scholar 

  28. Inoue K, et al. Effects of airway exposure to nanoparticles on lung inflammation induced by bacterial endotoxin in mice. Environ Health Perspect. 2006;114(9):1325–30. https://doi.org/10.1289/ehp.8903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kilar A, Dornyei A, Kocsis B. Structural characterization of bacterial lipopolysaccharides with mass spectrometry and on- and off-line separation techniques. Mass Spectrom Rev. 2013;32(2):90–117. https://doi.org/10.1002/mas.21352.

    Article  CAS  PubMed  Google Scholar 

  30. Klein DR, Holden DD, Brodbelt JS. Shotgun analysis of rough-type lipopolysaccharides using ultraviolet photodissociation mass spectrometry. Anal Chem. 2016;88(1):1044–51. https://doi.org/10.1021/acs.analchem.5b04218.

    Article  CAS  PubMed  Google Scholar 

  31. Kocsis B, et al. Mass spectrometry for profiling LOS and lipid a structures from whole-cell lysates: directly from a few bacterial colonies or from liquid broth cultures. Methods Mol Biol. 2017;1600:187–98. https://doi.org/10.1007/978-1-4939-6958-6_17.

    Article  CAS  PubMed  Google Scholar 

  32. Larrouy-Maumus G, Clements A, Filloux A, McCarthy RR, Mostowy S. Direct detection of lipid A on intact Gram-negative bacteria by MALDI-TOF mass spectrometry. J Microbiol Methods. 2016;120:68–71. https://doi.org/10.1016/j.mimet.2015.12.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Li H, Hitchins VM, Wickramasekara S. Rapid detection of bacterial endotoxins in ophthalmic viscosurgical device materials by direct analysis in real time mass spectrometry. Anal Chim Acta. 2016;943:98–105. https://doi.org/10.1016/j.aca.2016.09.030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Robert CB, et al. Mass spectrometry analysis of intact Francisella bacteria identifies lipid A structure remodeling in response to acidic pH stress. Biochimie. 2017;141:16–20. https://doi.org/10.1016/j.biochi.2017.08.008.

    Article  CAS  PubMed  Google Scholar 

  35. Uhlig S, et al. Profiling of 3-hydroxy fatty acids as environmental markers of endotoxin using liquid chromatography coupled to tandem mass spectrometry. J Chromatogr A. 2016;1434:119–26. https://doi.org/10.1016/j.chroma.2016.01.038.

    Article  CAS  PubMed  Google Scholar 

  36. Zaia J. Capillary electrophoresis-mass spectrometry of carbohydrates. Methods Mol Biol. 2016;984:13–25. https://doi.org/10.1007/978-1-62703-296-4_2.

    Article  CAS  Google Scholar 

  37. Li Y, Boraschi D. Endotoxin contamination: a key element in the interpretation of nanosafety studies. Nanomedicine (Lond). 2016;11(3):269–87. https://doi.org/10.2217/nnm.15.196.

    Article  CAS  Google Scholar 

  38. Li Y, et al. Bacterial endotoxin (lipopolysaccharide) binds to the surface of gold nanoparticles, interferes with biocorona formation and induces human monocyte inflammatory activation. Nanotoxicology. 2017;11(9–10):1157–75. https://doi.org/10.1080/17435390.2017.1401142.

    Article  CAS  PubMed  Google Scholar 

  39. Neun BW, Dobrovolskaia MA. Detection and quantitative evaluation of endotoxin contamination in nanoparticle formulations by LAL-based assays. Methods Mol Biol. 2011;697:121–30. https://doi.org/10.1007/978-1-60327-198-1_12.

    Article  CAS  PubMed  Google Scholar 

  40. Neun BW, Dobrovolskaia MA. Considerations and some practical solutions to overcome nanoparticle interference with LAL assays and to avoid endotoxin contamination in nanoformulations. Methods Mol Biol. 2018;1682:23–33. https://doi.org/10.1007/978-1-4939-7352-1_3.

    Article  CAS  PubMed  Google Scholar 

  41. Vetten MA, Yah CS, Singh T, Gulumian M. Challenges facing sterilization and depyrogenation of nanoparticles: effects on structural stability and biomedical applications. Nanomedicine. 2014;10(7):1391–9. https://doi.org/10.1016/j.nano.2014.03.017.

    Article  CAS  PubMed  Google Scholar 

  42. US FDA. Guidance for industry: pyrogen and endotoxins testing: questions and answers. 2012.

    Google Scholar 

  43. Dobrovolskaia MA, et al. Ambiguities in applying traditional Limulus amebocyte lysate tests to quantify endotoxin in nanoparticle formulations. Nanomedicine (Lond). 2010;5(4):555–62. https://doi.org/10.2217/nnm.10.29.

    Article  CAS  Google Scholar 

  44. Dutz S, Wojahn S, Grafe C, Weidner A, Clement JH. Influence of sterilization and preservation procedures on the integrity of serum protein-coated magnetic nanoparticles. Nanomaterials (Basel). 2017;7(12). https://doi.org/10.3390/nano7120453.

    Article  PubMed Central  Google Scholar 

  45. Piluso LG, Martinez MY. Resolving liposomal inhibition of quantitative LAL methods. PDA J Pharm Sci Technol. 1999;53(5):260–3.

    CAS  PubMed  Google Scholar 

  46. Gaines Das RE, Brugger P, Patel M, Mistry Y, Poole S. Monocyte activation test for pro-inflammatory and pyrogenic contaminants of parenteral drugs: test design and data analysis. J Immunol Methods. 2004;288(1–2):165–77. https://doi.org/10.1016/j.jim.2004.03.002.

    Article  CAS  PubMed  Google Scholar 

  47. Gimenes I, Caldeira C, Presgrave OA, de Moura WC, Villas Boas MH. Assessment of pyrogenic response of lipoteichoic acid by the monocyte activation test and the rabbit pyrogen test. Regul Toxicol Pharmacol. 2015;73(1):356–60. https://doi.org/10.1016/j.yrtph.2015.07.025.

    Article  CAS  PubMed  Google Scholar 

  48. Solati S, Aarden L, Zeerleder S, Wouters D. An improved monocyte activation test using cryopreserved pooled human mononuclear cells. Innate Immun. 2015;21(7):677–84. https://doi.org/10.1177/1753425915583365.

    Article  CAS  PubMed  Google Scholar 

  49. Wunderlich C, Schumacher S, Kietzmann M. Pyrogen detection methods: comparison of bovine whole blood assay (bWBA) and monocyte activation test (MAT). BMC Pharmacol Toxicol. 2014;15:50. https://doi.org/10.1186/2050-6511-15-50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Boratynski J, Szermer-Olearnik B. Endotoxin removal from Escherichia coli bacterial lysate using a biphasic liquid system. Methods Mol Biol. 2017;1600:107–12. https://doi.org/10.1007/978-1-4939-6958-6_10.

    Article  CAS  PubMed  Google Scholar 

  51. Dobrovolskaia MA, McNeil SE. In: Dobrovolskaia MA, McNeil SE, editors. Chapter 7, Immunological properties of engineered nanomaterials, vol. 1. New York: World Scientific Publishing Ltd; 2016. p. 143–86.

    Chapter  Google Scholar 

  52. Dobrovolskaia MA, Neun BW, Clogston JD, Grossman JH, McNeil SE. Choice of method for endotoxin detection depends on nanoformulation. Nanomedicine (Lond). 2014;9(12):1847–56. https://doi.org/10.2217/nnm.13.157.

    Article  CAS  Google Scholar 

  53. Oblak A, Jerala R. The molecular mechanism of species-specific recognition of lipopolysaccharides by the MD-2/TLR4 receptor complex. Mol Immunol. 2015;63(2):134–42. https://doi.org/10.1016/j.molimm.2014.06.034.

    Article  CAS  PubMed  Google Scholar 

  54. Soler-Rodriguez AM, et al. Neutrophil activation by bacterial lipoprotein versus lipopolysaccharide: differential requirements for serum and CD14. J Immunol. 2000;164(5):2674–83.

    Article  CAS  PubMed  Google Scholar 

  55. United States Pharmacopoeia. Bacterial endotoxin test 85. 2017.

    Google Scholar 

  56. Zheng J, Clogston JD, Patri AK, Dobrovolskaia MA, McNeil SE. Sterilization of silver nanoparticles using standard gamma irradiation procedure affects particle integrity and biocompatibility. J Nanomed Nanotechnol. 2011;2011(Suppl 5):001. https://doi.org/10.4172/2157-7439.s5-001.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Afonin KA, et al. Design and self-assembly of siRNA-functionalized RNA nanoparticles for use in automated nanomedicine. Nat Protoc. 2016;6(12):2022–34. https://doi.org/10.1038/nprot.2011.418.

    Article  CAS  Google Scholar 

  58. El-Salamouni NS, Farid RM, El-Kamel AH, El-Gamal SS. Effect of sterilization on the physical stability of brimonidine-loaded solid lipid nanoparticles and nanostructured lipid carriers. Int J Pharm. 2015;496(2):976–83. https://doi.org/10.1016/j.ijpharm.2015.10.043.

    Article  CAS  PubMed  Google Scholar 

  59. Galante R, et al. About the sterilization of chitosan hydrogel nanoparticles. PLoS One. 2016;11(12):e0168862. https://doi.org/10.1371/journal.pone.0168862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Montanari E, et al. One-step formation and sterilization of gellan and hyaluronan nanohydrogels using autoclave. J Mater Sci Mater Med. 2015;26(1):5362. https://doi.org/10.1007/s10856-014-5362-6.

    Article  CAS  PubMed  Google Scholar 

  61. Rowenczyk L, et al. Development of preservative-free nanoparticles-based emulsions: effects of NP surface properties and sterilization process. Int J Pharm. 2016;510(1):125–34. https://doi.org/10.1016/j.ijpharm.2016.06.014.

    Article  CAS  PubMed  Google Scholar 

  62. Sakar F, et al. Nano drug delivery systems and gamma radiation sterilization. Pharm Dev Technol. 2017;22(6):775–84. https://doi.org/10.3109/10837450.2016.1163393.

    Article  CAS  PubMed  Google Scholar 

  63. Shimojo AA, de Souza Brissac IC, Pina LM, Lambert CS, Santana MH. Sterilization of auto-crosslinked hyaluronic acid scaffolds structured in microparticles and sponges. Biomed Mater Eng. 2015;26(3–4):183–91. https://doi.org/10.3233/bme-151558.

    Article  CAS  PubMed  Google Scholar 

  64. Chan GC, Chan WK, Sze DM. The effects of beta-glucan on human immune and cancer cells. J Hematol Oncol. 2009;2:25. https://doi.org/10.1186/1756-8722-2-25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Barton C, et al. Beta-glucan contamination of pharmaceutical products: how much should we accept? Cancer Immunol Immunother. 2016;65(11):1289–301. https://doi.org/10.1007/s00262-016-1875-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Brown GD, Gordon S. Immune recognition. A new receptor for beta-glucans. Nature. 2001;413(6851):36–7. https://doi.org/10.1038/35092620.

    Article  CAS  PubMed  Google Scholar 

  67. Brown GD, Gordon S. Immune recognition of fungal beta-glucans. Cell Microbiol. 2005;7(4):471–9. https://doi.org/10.1111/j.1462-5822.2005.00505.x.

    Article  CAS  PubMed  Google Scholar 

  68. Gao D, Li W. Structures and recognition modes of toll-like receptors. Proteins. 2017;85(1):3–9. https://doi.org/10.1002/prot.25179.

    Article  CAS  PubMed  Google Scholar 

  69. Goodridge HS, Wolf AJ, Underhill DM. Beta-glucan recognition by the innate immune system. Immunol Rev. 2009;230(1):38–50. https://doi.org/10.1111/j.1600-065X.2009.00793.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Gow NA, et al. Immune recognition of Candida albicans beta-glucan by dectin-1. J Infect Dis. 2007;196(10):1565–71. https://doi.org/10.1086/523110.

    Article  CAS  PubMed  Google Scholar 

  71. Legentil L, et al. Molecular interactions of beta-(1-->3)-glucans with their receptors. Molecules. 2015;20(6):9745–66. https://doi.org/10.3390/molecules20069745.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Netea MG, et al. Immune sensing of Candida albicans requires cooperative recognition of mannans and glucans by lectin and Toll-like receptors. J Clin Invest. 2006;116(6):1642–50. https://doi.org/10.1172/jci27114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Sahasrabudhe NM, Dokter-Fokkens J, de Vos P. Particulate beta-glucans synergistically activate TLR4 and Dectin-1 in human dendritic cells. Mol Nutr Food Res. 2016;60(11):2514–22. https://doi.org/10.1002/mnfr.201600356.

    Article  CAS  PubMed  Google Scholar 

  74. Roslansky PF, Novitsky TJ. Sensitivity of Limulus amebocyte lysate (LAL) to LAL-reactive glucans. J Clin Microbiol. 1991;29(11):2477–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Tran T, Beal SG. Application of the 1,3-beta-D-glucan (Fungitell) assay in the diagnosis of invasive fungal infections. Arch Pathol Lab Med. 2016;140(2):181–5. https://doi.org/10.5858/arpa.2014-0230-RS.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The study was supported in part by federal funds from the National Cancer Institute, National Institutes of Health, under contract HHSN261200800001E. The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products, or organizations imply endorsement by the U.S. Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina A. Dobrovolskaia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Neun, B.W., Dobrovolskaia, M.A. (2019). Understanding Endotoxin and β-Glucan Contamination in Nanotechnology-Based Drug Products. In: Williams, K. (eds) Endotoxin Detection and Control in Pharma, Limulus, and Mammalian Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-17148-3_12

Download citation

Publish with us

Policies and ethics