Skip to main content

Basics of Three-Dimensional Ultrasound and Applications in Reproductive Medicine

  • Chapter
  • First Online:
Ultrasound Imaging in Reproductive Medicine

Abstract

Within the last few years, 3D ultrasound (US) has become an approved tool for use in the field of in vitro fertilization (IVF). An increasing number of publications within the last decade have demonstrated that the application of 3D sonography in medicine is superior to the conventional 2D techniques. Therefore, it is very likely that 3D US will play an increasingly important role in assisted reproductive techniques (ART) such as follicle monitoring or in the detection of pelvic pathologies. However, as 3D US is still a new tool, there is often a lack of standardization. Moreover, many aspects of this innovative technique and its novel instruments are often not well understood by many operators. Therefore, 3D US application often lags behind its scope. This chapter will address the basic principles and techniques for producing 3D US images and how to optimize image quality. We will discuss its technical capabilities as well as its limitations, such as artifacts due to improper calibration. In addition, a short list of clinical applications for this technique will be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahirwar C. 3D/4D ultrasound equipment market to grow at a CAGR of 7.03% during the period 2017–2021. Red Newsire Global. Available from: https://www.rednewswire.com/global-3d-4d-ultrasound-equipment-market-to-grow-at-a-cagr-of-7-03-during-the-period-2017-2021/. Last Accessed on 18 May 2018.

  2. Salomon LJ, Alfirevic Z, Bilardo CM, Chalouhi GE, Ghi T, Kagan KO, et al. SUOG practice guidelines: performance of first-trimester fetal ultrasound scan. Ultrasound Obstet Gynecol. 2013;41:102–13.

    Article  CAS  Google Scholar 

  3. Curie P, Curie J. Dévelopment, par pression, de l’électricité polaire dans les cristaux hémièdres à faces inclinées. C R Hébd Séances Acad Sci. 1880;91:294–5.

    Google Scholar 

  4. Szabo TL, Lewin PA. Ultrasound transducer selection in clinical imaging practice. J Ultrasound Med. 2013;32:573–82.

    Article  Google Scholar 

  5. Martin K, Ramnarine K. Physics. In: Hoskins PR, Martin K, Thrush A, editors. Diagnostic ultrasound: physics and equipment. 2nd ed. Cambridge, UK: Cambridge University Press; 2010.

    Google Scholar 

  6. Miller DL. Safety assurance in obstetrical ultrasound. Semin Ultrasound CT MR. 2008;29:156–64. Review.

    Article  Google Scholar 

  7. Ultrasonic Systems. Radiology key. Available from: https://radiologykey.com/ultrasonic-systems/. Last Accessed on 30 May 2018.

  8. Hua S, Yuchi M, Ding M. Computer Simulation for medical ultrasound c-mode imaging based on 2d array. Adv Mat Res. 2012;532(533):719–23. Available from: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.911.7989&rep=rep1&type=pdf. Last Accessed on 18 May 2018.

    Google Scholar 

  9. Merz E. 3D ultrasound in prenatal diagnosis. Curr Obstet Gynecol. 1999;9:93–100.

    Article  Google Scholar 

  10. Doppler C. Ueber das farbige Licht der Doppelsterne und einiger anderer Gestirne des Himmels. Verlag der königl. böhm. Gesellschaft der Wissenschaften. 1903. Bd. 2, S. 465–482). Available from: http://digital.bib-bvb.de/view/bvbmets/viewer.0.6.2.jsp?folder_id=0&dvs=1528188779301~287&pid=5210835&locale=de&usePid1=true&usePid2=true#. Last Accessed on 30 May 2018.

  11. Yamasato K, Zalud I. Three dimensional power Doppler of the placenta and its clinical applications. J Perinat Med. 2017;45:693–700. Review.

    Article  Google Scholar 

  12. Gonçalves LF, Espinoza J, Kusanovic JP, Lee W, Nien JK, Santolaya-Forgas J, et al. Applications of 2-dimensional matrix array for 3- and 4-dimensional examination of the fetus: a pictorial essay. J Ultrasound Med. 2006;25:745–55.

    Article  Google Scholar 

  13. Campbell S. A short history of sonography in obstetrics and gynaecology. Facts Views Vis Obgyn. 2013;5:213–29.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Prager RW, Ijaz UZ, Gee AH, Treece GM. Three-dimensional ultrasound imaging. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine. 2010;224:193–223.

    Article  CAS  Google Scholar 

  15. Fenster A, Downey DB. 3-D ultrasound imaging: a review. IEEE Eng Med Biol Mag. 1996;15:41–51.

    Article  Google Scholar 

  16. Zhang H, Banovac F, White A, Cleary K. Freehand 3D ultrasound calibration using an electromagnetically tracked needle. Available from: http://spie.org/Publications/Proceedings/Paper/10.1117/12.654906. Last Accessed on 20 May 2018.

  17. Fenster A, Downey DB, Cardinal HN. Three-dimensional ultrasound imaging. Phys Med Biol. 2001;46:R67–99. Review.

    Article  CAS  Google Scholar 

  18. Baba K. Development of 3D ultrasound. Donald Sch J Ultrasound Obstet Gynecol. 2010;4:205–15. Available from: https://www.dsjuog.com/doi/pdf/10.5005/jpjournals-10009-1144. Last Accessed on 02 May 2019.

    Article  Google Scholar 

  19. De Jong-Pleij EA, Ribbert LS, Tromp E, Bilardo CM. Three-dimensional multiplanar ultrasound is a valuable tool in the study of the fetal profile in the second trimester of pregnancy. Ultrasound Obstet Gynecol. 2010;35:195–200.

    Article  Google Scholar 

  20. Wong L, White N, Ramkrishna J, Araujo Júnior E, Meagher S, Costa Fda S. Three-dimensional imaging of the uterus: the value of the coronal plane. World J Radiol. 2015;7:484–93. Review.

    Article  Google Scholar 

  21. Dietz HP, Shek KL. Tomographic ultrasound imaging of the pelvic floor: which levels matter most? Ultrasound Obstet Gynecol. 2009;33:698–703.

    Article  CAS  Google Scholar 

  22. Ruano R. Recent advances in sonographic imaging of fetal thoracic structures. Expert Rev Med Devices. 2005;2:217–22. Review.

    Article  Google Scholar 

  23. Jouannic JM, Rosenblatt J, Demaria F, Jacobs R, Aubry MC, Benifla JL. Contribution of three-dimensional volume contrast imaging to the sonographic assessment of the fetal uterus. Ultrasound Obstet Gynecol. 2005;26:567–70.

    Article  Google Scholar 

  24. Principles of 3D Ultrasound. Radiology Key. Available from: https://radiologykey.com/principles-of-3d-ultrasound/. Last Accessed on 20 May 2018.

  25. Alcázar JL. The use of three-dimensional ultrasound in gynecological patients. Donald Sch J Ultrasound Obstet Gynecol. 2008;2:10–6. Available from: https://pdfs.semanticscholar.org/8e47/f112875922a165e972af6f7d80df477046bb.pdf?_ga=2.166936311.817103330.1556788335-777804567.1540477073. Last Accessed on 02 May 2019.

    Article  Google Scholar 

  26. Benacerraf BR. Inversion mode display of 3D sonography: applications in obstetric and gynecologic imaging. AJR Am J Roentgenol. 2006;187:965–71. Review.

    Article  Google Scholar 

  27. Timor-Tritsch IE, Monteagudo A, Tsymbal T. Three-dimensional ultrasound inversion rendering technique facilitates the diagnosis of hydrosalpinx. J Clin Ultrasound. 2010;38:372–6.

    PubMed  Google Scholar 

  28. Weber G, Merz E, Bahlmann F, Macchiella D. Ultrasound assessment of ovarian tumors–comparison between transvaginal 3D technique and conventional 2-dimensional vaginal ultrasonography. Ultraschall Med. 1997;18:26–30.

    Article  CAS  Google Scholar 

  29. Campbell S. The potential diagnostic capabilities of three-dimensional surface rendering. Ultrasound Obstet Gynecol. 1999;14:148.

    Article  CAS  Google Scholar 

  30. Turan S, Turan O, Baschat AA. Three- and four-dimensional fetal echocardiography. Fetal Diagn Ther. 2009;25:361–72. Review.

    Article  Google Scholar 

  31. Adriaanse BM, Tromp CH, Simpson JM, Van Mieghem T, Kist WJ, Kuik DJ, et al. Interobserver agreement in detailed prenatal diagnosis of congenital heart disease by telemedicine using four-dimensional ultrasound with spatiotemporal image correlation. Ultrasound Obstet Gynecol. 2012;39:203–9.

    Article  CAS  Google Scholar 

  32. Yeo L, Romero R, Jodicke C, Oggè G, Lee W, Kusanovic JP, et al. Four-chamber view and ‘swing technique’ (FAST) echo: a novel and simple algorithm to visualize standard fetal echocardiographic planes. Ultrasound Obstet Gynecol. 2011;37:423–31.

    Article  CAS  Google Scholar 

  33. Merz E, Miric-Tesanic D, Welter C. Value of the electronic scalpel (cut mode) in the evaluation of the fetal face. Ultrasound Obstet Gynecol. 2000;16:564–8.

    Article  CAS  Google Scholar 

  34. Powers J, Kremkau F. Medical ultrasound systems. Interface Focus. 2011;1:477–89.

    Article  Google Scholar 

  35. Udupa JK. Three-dimensional visualization and analysis methodologies: a current perspective. Radiographics. 1999;19:783–806. Review.

    Article  CAS  Google Scholar 

  36. Ong CL. The current status of three-dimensional ultrasonography in gynaecology. Ultrasonography. 2016;35:13–24. Review.

    Article  Google Scholar 

  37. Zalud I, Rocha F. Artifacts, pitfalls and normal variants. Donald Sch J Ultrasound. 2012;6:1–8. Available from: https://www.dsjuog.com/doi/pdf/10.5005/jp-journals-10009-1221. Last Accessed on 02 May 2019.

  38. Baba K, Satoh K. Development of a system for ultrasonic fetal three-dimensional reconstruction. Acta Obstet Gynaecol Jpn. 1986;38:1385.

    Google Scholar 

  39. Baba K, Satch K, Sakamoto S, Oka T, Shiego I. Development of an ultrasonic system for three-dimensional reconstruction of the fetus. J Perinat Med. 1989;17:19–24.

    Article  CAS  Google Scholar 

  40. Von Ramm OT, Smith SW. Three-dimensional imaging system. 1987. United States Patent 4694434. Available from: http://www.freepatentsonline.com/4694434.html. Last accessed on 20 May 2018.

  41. From Wired Frames to 3D. A short History of Kretztechnik AG, Zipf, Austria. Available from: http://www.ob-ultrasound.net/kretztechnik.html. Last accessed on 23 May 2018.

  42. Lees W. Ultrasound imaging in three and four dimensions. Semin Ultrasound CT MR. 2001;22:85–105. Review.

    Article  CAS  Google Scholar 

  43. Sohn C, Stolz W, Nuber B, Hesse A, Hornung B. Three-dimensional ultrasonic diagnosis in gynecology and obstetrics. Geburtshilfe Frauenheilkd. 1991;51:335–40.

    Article  CAS  Google Scholar 

  44. Steiner H, Staudach A, Spitzer D, Graf AH, Wienerroither H. Does 3D sonography present new perspectives for gynecology and obstetrics? Geburtshilfe Frauenheilkd. 1993;53:779–82.

    Article  CAS  Google Scholar 

  45. Steiner H, Spitzer D, Weiss-Wichert PH, Graf AH, Staudach A. Three-dimensional ultrasound in prenatal diagnosis of skeletal dysplasia. Prenat Diagn. 1995;15:373–7.

    Article  CAS  Google Scholar 

  46. Bonilla-Musoles F, Raga F, Osborne NG, Blanes J. Use of three-dimensional ultrasonography for the study of normal and pathologic morphology of the human embryo and fetus: preliminary report. J Ultrasound Med. 1995;14:757–65.

    Article  CAS  Google Scholar 

  47. Merz E, Pashaj S. Current role of 3D/4D sonography in obstetrics and gynecology. Donald School J Ultrasound Obstet Gynecol. 2013;7:400–8.

    Article  Google Scholar 

  48. Woo J. A short History of the development of Ultrasound in Obstetrics and Gynecology. Available from: http://www.ob-ultrasound.net/isuog3dfocus.html. Last accessed on 23 May 2018.

  49. Merton D. Diagnostic medical ultrasound technology: a brief historical review. J Diagn Med Sonography. 1997;13:10S–23S.

    Article  Google Scholar 

  50. Brandl H, Gritzky A, Haizinger M. 3D ultrasound: a dedicated system. Eur Radiol. 1999;9:331–3. Review.

    Article  Google Scholar 

  51. Grimbizis GF, Di Spiezio Sardo A, Saravelos SH, Gordts S, Exacoustos C, et al. The Thessaloniki ESHRE/ESGE consensus on diagnosis of female genital anomalies. Hum Reprod. 2016;31:2–7.

    Article  Google Scholar 

  52. Deb S, Campbell BK, Clewes JS, Raine-Fenning NJ. Quantitative analysis of antral follicle number and size: a comparison of two-dimensional and automated three-dimensional ultrasound techniques. Ultrasound Obstet Gynecol. 2010;35:354–60.

    Article  CAS  Google Scholar 

  53. Coelho Neto MA, Ludwin A, Borrell A, Benacerraf B, Dewailly D, da Silva Costa F, et al. Counting ovarian antral follicles by ultrasound: a practical guide. Ultrasound Obstet Gynecol. 2018;51:10–20.

    Article  CAS  Google Scholar 

  54. Nylander M, Frøssing S, Bjerre AH, Chabanova E, Clausen HV, Faber J, et al. Ovarian morphology in polycystic ovary syndrome: estimates from 2D and 3D ultrasound and magnetic resonance imaging and their correlation to anti-Müllerian hormone. Acta Radiol. 2017;58:997–1004.

    Article  Google Scholar 

  55. Lam PM, Raine-Fenning N. The role of three-dimensional ultrasonography in polycystic ovary syndrome. Hum Reprod. 2006;21:2209–15.

    Article  Google Scholar 

  56. Rotterdam ESHRE/ASRM-Sponsored PCOS consensus workshop group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome (PCOS). Hum Reprod. 2004;19:41–7.

    Article  Google Scholar 

  57. Lam PM, Johnson IR, Raine-Fenning NJ. Three-dimensional ultrasound features of the polycystic ovary and the effect of different phenotypic expressions on these parameters. Hum Reprod. 2007;22:3116–23.

    Article  Google Scholar 

  58. Alcázar JL, Jurado M. Three-dimensional ultrasound for assessing women with gynecological cancer: a systematic review. Gynecol Oncol. 2011;120:340–6.

    Article  Google Scholar 

  59. Stachowiak G, Zając A, Pertynska-Marczewska M, Stetkiewicz T. 2D/3D ultrasonography for endometrial evaluation in a cohort of 118 postmenopausal women with abnormal uterine bleedings. Ginekol Pol. 2016;87:787–92.

    Article  Google Scholar 

  60. Chan YY, Jayaprakasan K, Tan A, Thornton JG, Coomarasamy A, Raine-Fenning NJ. Reproductive outcomes in women with congenital uterine anomalies: a systematic review. Ultrasound Obstet Gynecol. 2011;38:371–82. Review.

    Article  CAS  Google Scholar 

  61. Saravelos SH, Cocksedge KA, Li TC. Prevalence and diagnosis of congenital uterine anomalies in women with reproductive failure: a critical appraisal. Hum Reprod Update. 2008;14:415–29.

    Article  Google Scholar 

  62. Hassan MA, Lavery SA, Trew GH. Congenital uterine anomalies and their impact on fertility. Womens Health (Lond). 2010;6:443–61. Review.

    Article  CAS  Google Scholar 

  63. Turkgeldi E, Urman B, Ata B. Role of three-dimensional ultrasound in gynecology. J Obstet Gynaecol India. 2015;65:146–54. Review.

    Article  Google Scholar 

  64. Bonilla-Musoles F, Martin N, Pepa Esquembre M, Caballero O. Uterine malformations: diagnosis with 3D/4D ultrasound. Donald School J Ultrasound Obstet Gynecol. 2015;9:123–48.

    Article  Google Scholar 

  65. ESHRE Early Pregnancy Guideline Development Group. Recurrent pregnancy loss. Guideline of the European Society of Human Reproduction and Embryology, 2017. Available from: https://www.eshre.eu/Guidelines-and-Legal/Guidelines/Recurrent-pregnancy-loss.aspx. Last Accessed on 02 May 2019.

  66. Kim MJ, Lee Y, Lee C, Chun S, Kim A, Kim HY, et al. Accuracy of three dimensional ultrasound and treatment outcomes of intrauterine adhesion in infertile women. Taiwan J Obstet Gynecol. 2015;54:737–41.

    Article  Google Scholar 

  67. Luciano DE, Exacoustos C, Albrecht L, LaMonica R, Proffer A, Zupi E, et al. Three-dimensional ultrasound in diagnosis of adenomyosis: histologic correlation with ultrasound targeted biopsies of the uterus. J Minim Invasive Gynecol. 2013;20:803–10.

    Article  Google Scholar 

  68. Exacoustos C, Brienza L, Di Giovanni A, Szabolcs B, Romanini ME, Zupi E, et al. Adenomyosis: three-dimensional sonographic findings of the junctional zone and correlation with histology. Ultrasound Obstet Gynecol. 2011;37:471–9.

    Article  CAS  Google Scholar 

  69. Struble J, Reid S, Bedaiwy MA. Adenomyosis: a clinical review of a challenging gynecologic condition. J Minim Invasive Gynecol. 2016;23:164–85.

    Article  Google Scholar 

  70. Yaman C, Sommergruber M, Ebner T, Pölz W, Moser M, Tews G. Reproducibility of transvaginal three-dimensional endometrial volume measurements during ovarian stimulation. Hum Reprod. 1999;14:2604–8.

    Article  CAS  Google Scholar 

  71. Vanderzwalmen P, Zech NH, Ectors F, Stecher A, Lejeune B, Vanderzwalmen S, et al. Blastocyst transfer after aseptic vitrification of zygotes: an approach to overcome an impaired uterine environment. Reprod Biomed Online. 2012;25:591–9.

    Article  Google Scholar 

  72. Quigley MM, Sokoloski JE, Richards SI. Timing human chorionic gonadotropin administration by days of estradiol rise. Fertil Steril. 1985;44:791–5.

    Article  CAS  Google Scholar 

  73. Wirleitner B, Okhowat J, Vištejnová L, Králíčková M, Karlíková M, Vanderzwalmen P, et al. Relationship between follicular volume and oocyte competence, blastocyst development and live-birth rate: optimal follicle size for oocyte retrieval. Ultrasound Obstet Gynecol. 2018;51:118–25.

    Article  CAS  Google Scholar 

  74. Kyei-Mensah A, Zaidi J, Pittrof R, Shaker A, Campbell S, Tan SL. Transvaginal three-dimensional ultrasound: accuracy of follicular volume measurements. Fertil Steril. 1996;65:371–6.

    Article  CAS  Google Scholar 

  75. Hernández J, Rodríguez-Fuentes A, Puopolo M, Palumbo A. Follicular volume predicts oocyte maturity: a prospective cohort study using three-dimensional ultrasound and SonoAVC. Reprod Sci. 2016;23:1639–43.

    Article  Google Scholar 

  76. Singh N, Usha BR, Malik N, Malhotra N, Pant S, Vanamail P. Three-dimensional sonography-based automated volume calculation (SonoAVC) versus two-dimensional manual follicular tracking in in vitro fertilization. Int J Gynaecol Obstet. 2015;13:166–9.

    Article  Google Scholar 

  77. Vandekerckhove F, Bracke V, De Sutter P. The value of automated follicle volume measurements in IVF/ICSI. Front Surg. 2014;1:18. Review.

    Article  Google Scholar 

  78. Murtinger M, Aburumieh A, Rubner P, Eichel V, Zech MH, Zech NH. Improved monitoring of ovarian stimulation using 3D transvaginal ultrasound plus automated volume count. Reprod Biomed Online. 2009;19:695–9.

    Article  Google Scholar 

  79. Revelli A, Martiny G, Delle Piane L, Benedetto C, Rinaudo P, Tur-Kaspa I. A critical review of bi-dimensional and three-dimensional ultrasound techniques to monitor follicle growth: do they help improving IVF outcome? Reprod Biol Endocrinol. 2014;12:107.

    Article  Google Scholar 

  80. Martins WP, Vieira CV, Teixeira DM, Barbosa MA, Dassunção LA, Nastri CO. Ultrasound for monitoring controlled ovarian stimulation: a systematic review and meta-analysis of randomized controlled trials. Ultrasound Obstet Gynecol. 2014;43:25–33. Review.

    Article  CAS  Google Scholar 

  81. Murtinger M, Zech MH, Spitzer D, Zech NH. Outpatient follicle monitoring: a plea for standardization in ultrasound based follicle monitoring and data transfer. J Reprod Infertil. 2014;15:105–8.

    PubMed  PubMed Central  Google Scholar 

  82. Rodriguez A, Guillén JJ, López MJ, Vassena R, Coll O, Vernaeve V. Learning curves in 3-dimensional sonographic follicle monitoring during controlled ovarian stimulation. J Ultrasound Med. 2014;33:649–55.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maximilian Murtinger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Murtinger, M., Schuff, M. (2019). Basics of Three-Dimensional Ultrasound and Applications in Reproductive Medicine. In: Stadtmauer, L., Tur-Kaspa, I. (eds) Ultrasound Imaging in Reproductive Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-16699-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16699-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16698-4

  • Online ISBN: 978-3-030-16699-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics