Skip to main content

Evolution of Robotics in Arthroplasty

  • Chapter
  • First Online:
Robotics in Knee and Hip Arthroplasty

Abstract

Robotic-assisted orthopedic surgery has been available clinically in some form for over two decades, claiming to improve total joint arthroplasty by enhancing the surgeon’s ability to reproduce alignment and therefore presumably to better restore kinematics. Various current systems include a robotic arm, robotic-guided cutting jigs, and robotic milling systems with a diversity of different navigation strategies using active, semi-active, or passive control systems. A review of previous designs and clinical studies demonstrate that these robotic systems decrease variability and increase precision, primarily focusing on component positioning and alignment. Some early clinical results indicate decreased revision rates and improved patient satisfaction with robotic-assisted arthroplasty. The future design objectives include precise planning and even further improved consistent intraoperative execution. Robotics has proven to be beneficial, reliable, and cost-effective in numerous other industries and is likely to continue to expand in the field of orthopedic surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Banerjee S, Cherian JJ, Elmallah RK, Pierce TP, Jauregui JJ, Mont MA. Robot-assisted total hip arthroplasty. Expert Rev Med Devices. 2016;13:47–56.

    Article  CAS  PubMed  Google Scholar 

  2. Banerjee S, Cherian JJ, Elmallah RK, Jauregui JJ, Pierce TP, Mont MA. Robotic-assisted knee arthroplasty. Expert Rev Med Devices. 2015;12:727–35.

    Article  PubMed  Google Scholar 

  3. de Steiger RN, Liu Y-L, Graves SE. Computer navigation for Total knee arthroplasty reduces revision rate for patients less than sixty-five years of age. J Bone Joint Surg Am. 2015;97:635–42.

    Article  PubMed  Google Scholar 

  4. NBS/RIA Robotics Research Workshop: Proceedings of the NBS/RIA Workshop on Robotic Research.

    Google Scholar 

  5. Merriam-Webster. Merriam-Webster’s collegiate dictionary. Merriam-Webster, 2004.

    Google Scholar 

  6. Robotics History. http://cs.stanford.edu/people/eroberts/courses/soco/projects/1998-99/robotics/history.html. Accessed 9 Apr 2017.

  7. Davies B. A review of robotics in surgery. Proc Inst Mech Eng H J Eng Med. 2006;214:129–40.

    Article  Google Scholar 

  8. Murphy D, Challacombe B, Khan MS, Dasgupta P. Robotic technology in urology. Postgrad Med J. 2006;82:743–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gourin G, Terris J. History of robotic surgery. In: Faust RA, editor. Robotics in surgery history. New York: Current and Future Applications; 2007. p. 3–12.

    Google Scholar 

  10. Netravali NA, Shen F, Park Y, Bargar WL. A perspective on robotic assistance for knee arthroplasty. Adv Orthop. 2013;2013:970703–9.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kazanzides P. Robotics for Orthopaedic Joint Reconstruction. Robotics in surgery: history, current and future applications; 2007.

    Google Scholar 

  12. Tew M, Waugh W. Tibiofemoral alignment and the results of knee replacement. J Bone Joint Surg Br. 1985;67:551–6.

    Article  CAS  PubMed  Google Scholar 

  13. Bellemans J, Vandenneucker H, Vanlauwe J. Robot-assisted total knee arthroplasty. Clin Orthop Relat Res. 2007;464:111–6.

    PubMed  Google Scholar 

  14. Siebert W, Mai S, Kober R, Heeckt PF. Technique and first clinical results of robot-assisted total knee replacement. Knee. 2002;9:173–80.

    Article  PubMed  Google Scholar 

  15. Wu L-D, Hahne HJ, Hassenpflug J. The dimensional accuracy of preparation of femoral cavity in cementless total hip arthroplasty. J Zheijang Univ Sci A. 2004;5:1270–8.

    Article  Google Scholar 

  16. Mazoochian F, Pellengahr C, Huber A, Kircher J, Refior HJ, Jansson V. Low accuracy of stem implantation in THR using the CASPAR-system: anteversion measurements in 10 hips. Acta Orthop Scand. 2009;75:261–4.

    Article  Google Scholar 

  17. Siebel T, Käfer W. Clinical outcome following robotic assisted versus conventional total hip arthroplasty: a controlled and prospective study of seventy-one patients. Z Orthop Ihre Grenzgeb. 2005;143:391–8.

    Article  CAS  PubMed  Google Scholar 

  18. Bargar WL, Bauer A, Borner M. Primary and revision total hip replacement using the Robodoc system. Clin Orthop Relat Res. 1998;354:82–91.

    Article  Google Scholar 

  19. Bargar WL. Robots in orthopaedic surgery. Clin Orthop Relat Res. 2007;463:31–6. https://doi.org/10.1097/BLO.0b013e318146874f.

    Article  PubMed  Google Scholar 

  20. Chun YS, Kim KI, Cho YJ, Kim YH, Yoo MC, Rhyu KH. Causes and patterns of aborting a robot-assisted arthroplasty. J Arthroplast. 2011;26:621–5.

    Article  Google Scholar 

  21. Jakopec M, Harris SJ, Rodriguez y Baena F, Gomes P, Cobb J, Davies BL. The first clinical application of a “hands-on” robotic knee surgery system. Comput Aided Surg. 2010;6:329–39.

    Article  Google Scholar 

  22. Park SE, Lee CT. Comparison of robotic-assisted and conventional manual implantation of a primary total knee arthroplasty. J Arthroplast. 2007;22:1054–9.

    Article  Google Scholar 

  23. Song E-K, Seon J-K, Park S-J, Jung WB, Park H-W, Lee GW. Simultaneous bilateral total knee arthroplasty with robotic and conventional techniques: a prospective, randomized study. Knee Surg Sports Traumatol Arthrosc. 2011;19:1069–76.

    Article  PubMed  Google Scholar 

  24. Hagio K, Sugano N, Takashina M, Nishii T, Yoshikawa H, Ochi T. Effectiveness of the ROBODOC system in preventing intraoperative pulmonary embolism. Acta Orthop Scand. 2003;74:264–9.

    Article  PubMed  Google Scholar 

  25. Börner M, Wiesel U, Ditzen W. Clinical experiences with ROBODOC and the Duracon total knee. In: Navigation and robotics in Total joint and spine surgery. Berlin, Heidelberg: Springer; 2004. p. 362–6.

    Chapter  Google Scholar 

  26. Song E-K, Seon J-K, Yim J-H, Netravali NA, Bargar WL. Robotic-assisted TKA reduces postoperative alignment outliers and improves gap balance compared to conventional TKA. Clin Orthop Relat Res. 2012;471:118–26.

    Article  PubMed Central  Google Scholar 

  27. Pugely AJ, Martin CT, Gao Y, Schweizer ML, Callaghan JJ. The incidence of and risk factors for 30-day surgical site infections following primary and revision total joint arthroplasty. J Arthroplast. 2015;30:47–50.

    Article  Google Scholar 

  28. Lonner JH, Smith JR, Picard F, Hamlin B, Rowe PJ, Riches PE. High degree of accuracy of a novel image-free handheld robot for unicondylar knee arthroplasty in a cadaveric study. Clin Orthop Relat Res. 2014;473:206–12.

    Article  PubMed Central  Google Scholar 

  29. Gregori A, Picard F, Bellemans J, Smithi J, Simone A. Handheld precision sculpting tool for unicondylar knee arthroplasty: a clinical review: th EFFORT Congress; 2014.

    Google Scholar 

  30. Wallace D, Gregori A, Picard F, Bellemans J, Lonner JH, Marquez R. The learning curve of a novel handheld robotic system for unicondylar knee arthroplasty. International Society of Computer Assisted Orthopedic Surgery; 2014.

    Google Scholar 

  31. Simons M, Riches P. The learning curve of robotically-assisted unicondylar knee arthroplasty. Bone Joint J. 2014;96-B:152.

    Google Scholar 

  32. Plaskos C, Cinquin P, Lavallée S, Hodgson AJ. Praxiteles: a miniature bone-mounted robot for minimal access total knee arthroplasty. Int J Med Rob Comput Assisted Surg. 2005;1:67–79.

    Article  CAS  Google Scholar 

  33. Koulalis D, O’Loughlin PF, Plaskos C, Kendoff D, Cross MB, Pearle AD. Sequential versus automated cutting guides in computer-assisted total knee arthroplasty. Knee. 2011;18:436–42.

    Article  PubMed  Google Scholar 

  34. Suero EM, Plaskos C, Dixon PL, Pearle AD. Adjustable cutting blocks improve alignment and surgical time in computer-assisted total knee replacement. Knee Surg Sports Traumatol Arthrosc. 2012;20:1736–41.

    Article  PubMed  Google Scholar 

  35. Ponder CE, Plaskos C, Cheal EJ. Press-fit total knee arthroplasty with a robotic-cutting guide: proof of concept and initial clinical experience. Bone Joint J. 2013;95-B:61.

    Google Scholar 

  36. Lang JE, Mannava S, Floyd AJ, Goddard MS, Smith BP, Mofidi A, Seyler TM, Jinnah RH. Robotic systems in orthopaedic surgery. J Bone Joint Surg Br. 2011;93-B:1296–9.

    Article  Google Scholar 

  37. Lonner JH, John TK, Conditt MA. Robotic arm-assisted UKA improves tibial component alignment: a pilot study. Clin Orthop Relat Res. 2010;468:141–6.

    Article  PubMed  Google Scholar 

  38. RK SINHA. Outcomes of robotic arm-assisted unicompartmental knee arthroplasty. Am J Orthop. 2009;38:20–2.

    Google Scholar 

  39. Pearle AD, O’Loughlin PF, Kendoff DO. Robot-assisted unicompartmental knee arthroplasty. J Arthroplast. 2010;25:230–7.

    Article  Google Scholar 

  40. Citak M, Suero EM, Citak M, Dunbar NJ, Branch SH, Conditt MA, Banks SA, Pearle AD. Unicompartmental knee arthroplasty: is robotic technology more accurate than conventional technique? Knee. 2013;20:268–71.

    Article  PubMed  Google Scholar 

  41. Hamilton WG, Ammeen D, Engh CA, Engh GA. Learning curve with minimally invasive unicompartmental knee arthroplasty. J Arthroplast. 2010;25:735–40.

    Article  Google Scholar 

  42. Lonner JH. Indications for unicompartmental knee arthroplasty and rationale for robotic arm-assisted technology. Am J Orthop. 2009;38:3–6.

    PubMed  Google Scholar 

  43. Coon TM. Integrating robotic technology into the operating room. Am J Orthop. 2009;38:7–9.

    PubMed  Google Scholar 

  44. Jinnah RH, Horowitz S, Lippincott C, Conditt M. The learning curve of robotically assisted UKA. Annual Congress of ISTA; 2009.

    Google Scholar 

  45. Conditt M, Coon T, Hernandez A, Branch S. Short term survivorship and outcomes of robotically assisted bicompartmental arthroplasty. Bone Joint J. 2016;98-B:49.

    Article  Google Scholar 

  46. Tamam C, Plate JF, Augart M, Poehling GG, Jinnah RH. Retrospective clinical and radiological outcomes after robotic assisted Bicompartmental knee arthroplasty. Adv Orthop. 2015;2015:1–7.

    Article  Google Scholar 

  47. Jones B, Blyth MJ, MacLean A, Anthony I, Rowe P. Accuracy of UKA implant positioning and early clinical outcomes in a RCT comparing robotic assisted and manual surgery. th Annual CAOS Meeting; 2013.

    Google Scholar 

  48. Coon T. MAKOplasty medial UKA demonstrates low two-year revision rate in multicenter study. From short to mid term survivorship of robotically assisted UKA: a multicenter study. ISTA th Annual Congress; 2014.

    Google Scholar 

  49. Pearle AD, van der List JP, Lee L, COON TM, Borus TA, Roche MW. Survivorship and patient satisfaction of robotic-assisted medial unicompartmental knee arthroplasty at a minimum two-year follow-up. Knee. 2017;24:419–28.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Marcovigi A, Zambianchi F, Sandoni D, Rivi E, Catani F. Robotic-arm assisted partial knee arthroplasty: a single Centre experience. Acta Biomed. 2017;88:54–9.

    PubMed  PubMed Central  Google Scholar 

  51. Illgen RL, Bukowski BR, Abiola R, Anderson P, Chughtai M, Khlopas A, Mont MA. Robotic-assisted total hip arthroplasty: outcomes at minimum two-year follow-up. Surg Technol Int. 2017;30:365.

    Google Scholar 

  52. Domb BG, Bitar El YF, Sadik AY, Stake CE, Botser IB. Comparison of robotic-assisted and conventional Acetabular cup placement in THA: a matched-pair controlled study. Clin Orthop Relat Res. 2014;472:329–36.

    Article  PubMed  Google Scholar 

  53. Elson L, Dounchis J, Illgren R, Marchand R. A multi-center evaluation of acetabular cup positioning in robotic-arm assisted total hip arthroplasty. th Annual CAOS Meeting, 2013.

    Google Scholar 

  54. Nawabi DH, Conditt MA, Ranawat AS, Dunbar NJ, Jones J, Banks S, Padgett DE. Haptically guided robotic technology in total hip arthroplasty: a cadaveric investigation. Proc Inst Mech Eng H J Eng Med. 2013;227:302–9.

    Article  Google Scholar 

  55. Jerabek SA, Carroll KM, Marratt JD, Mayman DJ, Padgett DE. Accuracy of cup positioning and achieving desired hip length and offset following robotic THA. th Annual CAOS Meeting; 2014.

    Google Scholar 

  56. Suarez-Ahedo C, Gui C, Martin TJ, Chandrasekaran S, Lodhia P, Domb BG. Robotic-arm assisted total hip arthroplasty results in smaller acetabular cup size in relation to the femoral head size: a matched-pair controlled study. Hip Int. 2017;27:147–52.

    Article  PubMed  Google Scholar 

  57. Bukowski B, Abiola R, Illgren R. Outcomes after primary total hip arthroplasty: manual compared with robotic assisted techniques. th Annual Advances in Arthroplasty; 2014.

    Google Scholar 

  58. Khlopas A, Chughtai M, Hampp EL, et al. Robotic-arm assisted total knee arthroplasty demonstrated soft tissue protection. Surg Technol Int. 2017;30:441–6.

    PubMed  Google Scholar 

  59. Wolf A, Jaramaz B, Lisien B, DiGioia AM. MBARS: mini bone-attached robotic system for joint arthroplasty. Int J Med Rob Comput Assisted Surg. 2005;1:101–21.

    Article  CAS  Google Scholar 

  60. Kube CR, Parker CAC, Wang T, Zhang H. Biologically inspired collective robotics. Recent developments in biologically inspired computing. https://doi.org/10.4018/9781591403128.ch015.

  61. Song S, Mor A, Jaramaz B. HyBAR: hybrid bone-attached robot for joint arthroplasty. Int J Med Rob Comput Assisted Surg. 2009;5:223–31.

    Article  CAS  Google Scholar 

  62. Conditt MA, Roche MW. Minimally invasive robotic-arm-guided unicompartmental knee arthroplasty. J Bone Joint Surg Am. 2009;91(Suppl 1):63–8.

    Article  PubMed  Google Scholar 

  63. Liow MHL, Xia Z, Wong MK, Tay KJ, Yeo SJ, Chin PL. Robot-assisted total knee arthroplasty accurately restores the joint line and mechanical axis. A prospective randomised study. J Arthroplast. 2014;29:2373–7.

    Article  Google Scholar 

  64. Yildirim G, Fernandez-Madrid I, Schwarzkopf R, Walker P, Karia R. Comparison of robot surgery modular and Total knee arthroplasty kinematics. J Knee Surg. 2014;27:157–64.

    Article  PubMed  Google Scholar 

  65. Plate JF, Mofidi A, Mannava S, Smith BP, Lang JE, Poehling GG, Conditt MA, Jinnah RH. Achieving accurate ligament balancing using robotic-assisted unicompartmental knee arthroplasty. Adv Orthop. 2013;2013:1–6.

    Article  Google Scholar 

  66. Illgren R. Robotically assisted total hip arthroplasty improves clinical outcome compared with manual technique. rd Annual Course Advances in Arthroplasty.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Jacofsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Allen, M.W., Jacofsky, D.J. (2019). Evolution of Robotics in Arthroplasty. In: Lonner, J. (eds) Robotics in Knee and Hip Arthroplasty. Springer, Cham. https://doi.org/10.1007/978-3-030-16593-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16593-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16592-5

  • Online ISBN: 978-3-030-16593-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics