Skip to main content

Application of Nanoparticles in Crop Production and Protection

  • Chapter
  • First Online:
Plant Nanobionics

Part of the book series: Nanotechnology in the Life Sciences ((NALIS))

Abstract

Nanotechnology discusses about the manufacture and exploitation of materials whose ingredients exist at the nanoscale. Recent manufacturing progressions have managed to alter nanomaterials into different sizes and shapes. Nanoparticles are being used for multiple purposes like in electronics, sensor technology optical devices, biological labeling, and medical treatments. However, the use of nanoparticles in agriculture, especially for crop production and protection, is an unmapped area. This review sums up application and role of nanomaterials in enhancing future crop production and protection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd-Elsalam KA (2013) Nano platforms for plant pathogenic fungi management. App Phys A 100:829–834

    Google Scholar 

  • Abd-Elsalam KA, Prasad R (2018) Nanobiotechnology Applications in Plant Protection. Springer International Publishing (ISBN 978-3-319-91161-8) https://www.springer.com/us/book/9783319911601

  • Alvarez-Puebla RA, Dos Santos DS Jr, Aroca RF (2004) Surface-enhanced Raman scattering for ultrasensitive chemical analysis of 1 and 2-naphthalenethiols. Analyst 12912:1251–1256

    Article  CAS  Google Scholar 

  • Ampleyeva LE, Konkov AA, Rudnaya AV (2012) Bulletin of Ryazan Agrotechnological University, edited by Kostychev’s PA (In Russian), 3:33

    Google Scholar 

  • Arora S, Sharma P, Kumar S, Nayan R, Khanna PK, Zaidi MGH (2012) Gold-nanoparticle induced enhancement in growth and seed yield of Brassica juncea. Plant Growth Regul 66(3):303–310

    Article  CAS  Google Scholar 

  • Aslani F, Bagheri S, MuhdJulkapli N, Juraimi AS, Hashemi FSG, Baghdadi A (2014) Effects of engineered nanomaterials on plants growth: an overview. Sci World J. http://dx.doi.org/10.1155/2014/641759

    Google Scholar 

  • Astefanei A, Núñez O, Galceran MT (2015) Characterisation and determination of fullerenes: a critical review. Anal Chim Acta 882:1–21

    Article  CAS  PubMed  Google Scholar 

  • Barrena R, Casals E, Colón J, Font X, Sánchez A, Puntes V (2009) Evaluation of the ecotoxicity of model nanoparticles. Chemosphere 75(7):850–857

    Article  CAS  PubMed  Google Scholar 

  • Bergeson LL (2010a) Nanosilver: US EPA’s pesticide office considers how best to proceed. Environ Qual Manag 19(3):79–85

    Article  Google Scholar 

  • Bergeson LL (2010b) Nanosilver pesticide products: what does the future hold? Environ Qual Manag 19(4):73–82

    Article  Google Scholar 

  • Bhatt JSA (2003) Heralding a new future-Nanotechnology. Curr Sci 85(2):147–154

    Google Scholar 

  • Bhattacharyya A, Duraisamy P, Govindarajan M, Buhroo AA, Prasad R (2016) Nano-biofungicides: Emerging trend in insect pest control. In: Advances and applications through fungal nanobiotechnology (ed. Prasad R), Springer International Publishing Switzerland 307–319

    Google Scholar 

  • Bohr MT (2002) Nanotechnology goals and challenges for electronic applications. IEEE Trans Nanotechnol 1:56–62

    Article  Google Scholar 

  • Bradley EL, Castle L, Chaudhry Q (2011) Applications of nanomaterials in food packaging with a consideration of opportunities for developing countries. Trends Food Sci Technol 22:604–610

    Article  CAS  Google Scholar 

  • Bryaskova R, Pencheva D, Nikolov S, Kantardjiev T (2011) Synthesis and comparative study on the antimicrobial activity of hybrid materials based on silver nanoparticles AgNPs stabilized by polyvinylpyrrolidone PVP. J Chem Biol 44:185

    Article  Google Scholar 

  • Byrappa K, Ohara S, Adschiri T (2008) Nanoparticles synthesis using supercritical fluid technology towards biomedical applications. Adv Drug Deliv Rev 60:299–327

    Article  CAS  PubMed  Google Scholar 

  • Calandra P, La Parola V, Turco Liveri V, Lidorikis E, Finocchi F (2013) Composite nanoparticles. J Chem. http:dx.doi.org/10.1155/2013/536341

    Google Scholar 

  • Canas JE, Long M, Nations S, Vadan R, Dai L, Luo M, Olszyk D (2008) Effects of functionalized and nonfunctionalized single-walled carbon nanotubes on root elongation of select crop species. Environ Toxicol Chem 279:1922–1931

    Article  Google Scholar 

  • Chau CF, Wu SH, Yen GC (2007) The development of regulations for food nanotechnology. Trends Food Sci Technol 18(5):269–280

    Article  CAS  Google Scholar 

  • Chen KL, Elimelech M (2007) Influence of humic acid on the aggregation kinetics of fullerene (C-60) nanoparticles in monovalent and divalent electrolyte solutions. J Colloid Interface Sci 309:126–134

    Article  CAS  PubMed  Google Scholar 

  • Debnath N, Das S, Seth D, Chandra R, Bhattacharya SC, Goswami A (2011) Entomotoxic effect of silica nanoparticles against Sitophilus oryzae (L.). J Pest Sci 84(1):99–105

    Article  Google Scholar 

  • Delfani M, Firouzabadi MB, Farrokhi N, Makarian H (2014) Some physiological responses of black-eyed pea to iron and magnesium nanofertilizers. Commun Soil Sci Plant Anal 45(4):530–540

    Article  CAS  Google Scholar 

  • Dhoke SK, Mahajan P, Kamble R, Khanna A (2013) Effect of nanoparticles suspension on the growth of mung (Vigna radiata) seedlings by foliar spray method. Nanotechnol Dev 3(1):1

    Article  CAS  Google Scholar 

  • Esfand R, Tomalia DA (2001) Polyamidoamine (PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications. Drug Discov Today 6(8):427–436

    Article  CAS  PubMed  Google Scholar 

  • Fernandes T, Nielsen H, Burridge T, Stone V (2007) Toxicity of nanoparticles to embryos of the marine macroalgae Fucus serratus. 2nd international conference on the environmental effects of nanoparticles and nanomaterials, London, England

    Google Scholar 

  • Gajbhiye M, Kesharwani J, Ingle A, Gade A, Rai M (2009) Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomedicine 54:382–386

    Article  CAS  Google Scholar 

  • Gao J, Xu B (2009) Applications of nanomaterials inside cells. Nano Today 4:37–51

    Article  CAS  Google Scholar 

  • Gao FQ, Hong FS, Liu C, Zheng L, Su MY (2006) Mechanism of nano-anatase TiO2 on promoting photosynthetic carbon reaction of spinach: inducing complex of Rubisco–Rubisco activase. Biol Trace Elem Res 111:286–301

    Article  Google Scholar 

  • Ghafariyan MH, Malakouti MJ, Dadpour MR, Stroeve P, Mahmoudi M (2013) Effects of magnetite nanoparticles on soybean chlorophyll. Environ Sci Technol 47:10645–10652

    CAS  PubMed  Google Scholar 

  • Ghorbanpour M, Fahimirad S (2017) Plant nanobionics a novel approach to overcome the environmental challenges. In: Medicinal plants and environmental challenges. Springer, Cham, pp 247–257

    Chapter  Google Scholar 

  • Giraldo JP, Landry MP, Faltermeier SM, McNicholas TP, Iverson NM, Boghossian AA, Reuel NF, Hilmer AJ, Sen F, Brew JA, Strano MS (2014) Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nat Mater 134:400

    Article  CAS  Google Scholar 

  • Hong F, Zhou J, Liu C, Yang F, Wu C, Zheng L, Yang P (2005) Effect of nano-TiO2 on photochemical reaction of chloroplasts of spinach. Biol Trace Elem Res 105(1–3):269–279

    Article  CAS  PubMed  Google Scholar 

  • Hubler A, Lyon D (2013) Gap size dependence of the dielectric strength in nano vacuum gaps. IEEE Trans Dielectr Electr Insul 20(4):1467

    Article  Google Scholar 

  • Hund-Rinke K, Simon M (2006) Ecotoxic effect of photocatalytic active nanoparticles TiO2 on algae and daphnids. Environ Sci Pollut Res 13(4):225–232

    Article  CAS  Google Scholar 

  • Imahori H, Mori Y, Matano Y (2003) Nanostructured artificial photosynthesis. J Photochem Photobiol C 4:51–83.

    Article  CAS  Google Scholar 

  • Iram F, Iqbal MS, Athar MM, Saeed MZ, Yasmeen A, Ahmad R (2014) Glucoxylan-mediated green synthesis of gold and silver nanoparticles and their phyto-toxicity study. Carbohydr Polym 104:29–33

    Article  CAS  PubMed  Google Scholar 

  • Jain KK (2005) The role of nanobiotechnology in drug discovery. Drug Discov Today 10(21):1435–1442

    Article  CAS  PubMed  Google Scholar 

  • James EM (1999) Practical aspects of atomic resolution imaging and analysis in STEM. Ultramicroscopy 78:125–139

    Article  CAS  Google Scholar 

  • Janmohammadi M, Sabaghnia N, Ahadnezhad A (2015) Impact of silicon dioxide nanoparticles on seedling early growth of lentil (Lens culinaris medik.) genotypes with various origins. Agriculture and. Forestry 61(3):1933

    Google Scholar 

  • Jayaseelan C, Ramkumar R, Rahuman AA, Perumal P (2013) Green synthesis of gold nanoparticles using seed aqueous extract of Abelmoschus esculentus and its antifungal activity. Ind Crop Prod 45:423

    Article  CAS  Google Scholar 

  • Jianhui Y, Kelong H, Yuelong W, Suqin L (2005) Study on anti-pollution nanopreparation of dimethomorph and its performance. Chin Sci Bull 50(2):108–112

    Article  Google Scholar 

  • Jogee PS, Ingle AP, Rai M (2017) Isolation and identification of toxigenic fungi from infected peanuts and efficacy of silver nanoparticles against them. Food Control 71:143–151

    Article  CAS  Google Scholar 

  • Judy JD (2013) Bioavailability of manufactured nanomaterials in terrestrial ecosystems. Thesis and dissertations plant and soil sciences. Paper 18. http://uknowledge.uky.edu/pss_etds/18

  • Kah M, Hofmann T (2015) The challenge: carbon nanomaterials in the environment: new threats or wonder materials? Environ Toxicol Chem 34:954

    Article  CAS  PubMed  Google Scholar 

  • Kah M, Beulke S, Tiede K, Hofmann T (2013) Nanopesticides: state of knowledge, environmental fate, and exposure modelling. Crit Rev Environ Sci Technol 4316:1823–1867

    Article  CAS  Google Scholar 

  • Kesharwani P, Jain K, Jain NK (2014) Dendrimer as nanocarrier for drug delivery. Prog Polym Sci 39(2):268–307

    Article  CAS  Google Scholar 

  • Khan I, Saeed K, Khan I (2017) Nanoparticles: properties, applications and toxicities. Arab J Chem. https://doi.org/10.1016/j.arabjc.2017.05.011

    Google Scholar 

  • Khizhnyak SV, Shevelyov DI, Samoylova VA (2015) Influence of biogenic nanoparticles of ferrihydrite on the efficiency of etching wheat seeds. Bulletin of Krasnoyarsk State Agrarian University (10)

    Google Scholar 

  • Khodakovskaya MV, de-Silva K, Biris AS, Dervishi E, Villagarcia H (2012) Carbon nanotubes induce growth enhancement of tobacco cells. ACS Nano 63:2128–2135

    Article  CAS  Google Scholar 

  • Khodakovskaya MV, Kim B, Kim JN, Alimohammadi M, Dervishi E, Mustafa T et al (2013) Carbon nanotubes as plant growth regulators: effects on tomato growth, reproductive system, and soil microbial community. Small 9:115–123

    Article  CAS  PubMed  Google Scholar 

  • Kim TN, Feng QL, Kim JO, Wu J, Wang H, Chen GC, Cui FZ (1998) Antimicrobial effects of metal ions Ag+, Cu2+, Zn2+ in hydroxyapatite. J Mater Sci Mater Med 93:129–134

    Article  Google Scholar 

  • Kirschbaum MUF (2011) Does enhanced photosynthesis enhance growth? Lessons learned from CO2 enrichment studies. Plant Physiol 155:117–124

    Article  CAS  PubMed  Google Scholar 

  • Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) C60: buckminsterfullerene. Nature 318:162–163

    Article  CAS  Google Scholar 

  • Kumar V, Guleria P, Kumar V, Yadav SK (2013) Gold nanoparticle exposure induces growth and yield enhancement in Arabidopsis thaliana. Sci Total Environ 461:462–468

    Article  PubMed  CAS  Google Scholar 

  • Lahiani MH, Dervishi E, Chen J, Nima Z, Gaume A, Biris AS, Khodakovskaya MV (2013) Impact of carbon nanotube exposure to seeds of valuable crops. ACS Appl Mater Interfaces 516:7965–7973

    Article  CAS  Google Scholar 

  • Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller RN (2010) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 110:2574–2574

    Article  CAS  Google Scholar 

  • Lee J, Mahendra S, Alvarez PJJ (2010) Nanomaterials in the construction industry: a review of their applications and environmental health and safety considerations. ACS Nano 4(7):3580–3590

    Article  CAS  PubMed  Google Scholar 

  • Lei Z, Mingyu S, Xiao W (2007) Effects of nano-anatase on spectral characteristics and distribution of LCHII on the thylakoid membranes of spinach. Biol Trace Elem Res 120:273–283

    Article  PubMed  CAS  Google Scholar 

  • Li ZZ, Chen JF, Liu F, Liu AQ, Wang Q, Sun HY, Wen LX (2007) Study of UV-shielding properties of novel porous hollow silica nanoparticle carriers for avermectin. Pest Manag Sci 633:241–246

    Article  CAS  Google Scholar 

  • Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 1502:243–250

    Article  CAS  Google Scholar 

  • Linglan M, Chao L, Chunxiang Q, Sitao Y, Jie L, Fengqing G, Fashui H (2008) Rubisco activase mRNA expression in spinach: modulation by nanoanatase treatment. Biol Trace Elem Res 122(2):168–178

    Article  PubMed  CAS  Google Scholar 

  • Liu R, Lal R (2014) Synthetic apatite nanoparticles as a phosphorus fertilizer for soybean (Glycine max). Sci Rep 4:5686–5691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Zhang D, Zhang S, He X, Wang Y, Feng Z (2005) Responses of peanut to nano-calcium carbonate. Plant Nutr Fertilizer Sci 11:385–389

    Google Scholar 

  • Liu Z, Davis C, Cai W, He L, Chen X, Dai H (2008) Circulation and long-term fate of functionalized, biocompatible single-walled carbon nanotubes in mice probed by Raman spectroscopy. Proc Natl Acad Sci 1055:1410–1415

    Article  Google Scholar 

  • Liu H, Xu GW, Wang YF, Zhao HS, Xiong S, Wu Y, Xie DH (2015) Composite scaffolds of nano-hydroxyapatite and silk fibroin enhance mesenchymal stem cell-based bone regeneration via the interleukin 1 alpha autocrine/paracrine signaling loop. Biomaterials 49:103–112

    Article  CAS  PubMed  Google Scholar 

  • Lu CM, Zhang CY, Wen JQ, Wu GR, Tao MX (2002) Research of the effect of nanometer materials on germination and growth enhancement of Glycine max and its mechanism. Soybean Sci 21(4):168–172

    CAS  Google Scholar 

  • Ma Y, Kuang L, He X, Bai W, Ding Y, Zhang Z, Chai Z (2010) Effects of rare earth oxide nanoparticles on root elongation of plants. Chemosphere 783:273–279

    Article  CAS  Google Scholar 

  • McKee MS, Filser J (2016) Impacts of metal-based engineered nanomaterials on soil communities. Environ Sci Nano 3(3):506–533

    Article  CAS  Google Scholar 

  • Morla S, Rao CR, Chakrapani R (2011) Factors affecting seed germination and seedling growth of tomato plants cultured in vitro conditions. J Chem Biol Phys Sci 1(2):328

    CAS  Google Scholar 

  • Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010) Nanoparticulate material delivery to plants. Plant Sci 179(3):154–163

    Article  CAS  Google Scholar 

  • Nekrasova GF, Ushakova OS, Ermakov AE, Uimin MA, Byzov IV (2011) Effects of copper (II) ions and copper oxide nanoparticles on Elodea densa Planch. Russ J Ecol 42:458–463

    Article  CAS  Google Scholar 

  • Noji T, Kamidaki C, Kawakami K, Shen JR, Kajino T, Fukushima Y, Sekitoh T, Itoh S (2011) Photosynthetic oxygen evolution in mesoporous silica material: adsorption of photosystem II reaction center complex into 23 nm nanopores in SBA. Langmuir 27(2):705–713

    Article  CAS  PubMed  Google Scholar 

  • Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113(7):823

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Portney NG, Mihrimah O (2006) Nano-oncology: drug delivery, imaging, and sensing. Anal Bioanal Chem 384(3):620–630

    Article  CAS  PubMed  Google Scholar 

  • Pourkhaloee A, Haghighi M, Saharkhiz MJ, Jouzi H, Doroodmand MM (2011) Carbon nanotubes can promote seed germination via seed coat penetration. Seed Technol 33:155–169

    Google Scholar 

  • Pradhan S, Patra P, Das S, Chandra S, Mitra S, Dey KK (2013) Photochemical modulation of biosafe manganese nanoparticles on Vigna radiata: a detailed molecular, biochemical, and biophysical study. Environ Sci Technol 47:13122–13131

    Article  CAS  PubMed  Google Scholar 

  • Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713

    Article  CAS  Google Scholar 

  • Prasad R, Kumar M, Kumar V (2017a) Nanotechnology: An Agriculture paradigm. Springer Nature Singapore (ISBN: 978-981-10-4573-8)

    Google Scholar 

  • Prasad R, Kumar V and Kumar M (2017b) Nanotechnology: Food and Environmental Paradigm. Springer Nature Singapore (ISBN 978-981-10-4678-0)

    Google Scholar 

  • Qi M, Liu Y, Li T (2013) Nano-TiO2 improve the photosynthesis of tomato leaves under mild heat stress. Biol Trace Elem Res 156:323–328

    Article  CAS  PubMed  Google Scholar 

  • Qureshi A, Kang WP, Davidson JL, Gurbuz Y (2009) Review on carbon-derived, solid-state, micro and nano sensors for electrochemical sensing applications. Diam Relat Mater 18:1401–1420

    Article  CAS  Google Scholar 

  • Rico CM, Majumdar S, Duarte-Gardea M, Peralta-Videa JR, Gardea-Torresdey JL (2011) Interaction of nanoparticles with edible plants and their possible implications in the food chain. J Agric Food Chem 598:3485–3498

    Article  CAS  Google Scholar 

  • Rui M, Ma C, Hao Y, Guo J, Rui Y, Tang X, Zhao Q, Fan X, Zhang Z, Hou T and Zhu S (2016) Iron oxide nanoparticles as a potential iron fertilizer for peanut (Arachis hypogaea) Frontiers in plant science 9;7:815

    Google Scholar 

  • Sah S, Sorooshzadeh A, Rezazadeh HS, Naghdibadi HA (2011) Effect of nano silver and silver nitrate on seed yield of borage. J Med Plants Res 55:706–710

    Google Scholar 

  • Saharan V, Sharma G, Yadav M, Choudhary MK, Sharma SS, Pal A et al (2015) Synthesis and in vitro antifungal efficacy of Cu–chitosan nanoparticles against pathogenic fungi of tomato. Int J Biol Macromol 75:346–353

    Article  CAS  PubMed  Google Scholar 

  • Sanjeeb KS, Vinod L (2003) Nanotech approaches to drug delivery and imaging. Drug Discov Today 8:1112–1120

    Article  CAS  Google Scholar 

  • Santhoshkumar T, Rahuman AA, Bagavan A, Marimuthu S, Jayaseelan C, Kirthi AV et al (2012) Evaluation of stem aqueous extract and synthesized silver nanoparticles using Cissus quadrangularis against Hippobosca maculata and Rhipicephalus (Boophilus) microplus. Exp Parasitol 132(2):156–165

    Article  CAS  PubMed  Google Scholar 

  • Serrato-Valenti G, Cornara L, Modenesi P, Piana M, Mariotti MG (2000) Structure and histochemistry of embryo envelope tissues in the mature dry seed and early germination of Phacelia tanacetifolia. Ann Bot 855:625–634

    Article  Google Scholar 

  • Shah V, Belozerova I (2009) Influence of metal nanoparticles on the soil microbial community and germination of lettuce seeds. Water Air Soil Pollut 197(1–4):143–148

    Article  CAS  Google Scholar 

  • Sharma P, Bhatt D, Zaidi MGH, Saradhi PP, Khanna PK, Arora S (2012) Silver nanoparticle-mediated enhancement in growth and antioxidant status of Brassica juncea. Appl Biochem Biotechnol 167(8):2225–2233

    Article  CAS  PubMed  Google Scholar 

  • Shin, Seung Won, In Hyun Song, Soong Ho Um (2015) Role of physicochemical properties in nanoparticle toxicity. Nano 3:1351–1365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siddiqui M, Al-Whaibi H (2013) Role of nano-SiO2 in germination of tomato (Lycopersicum esculentum). Saudi J Biol Sci 21(1):13–17

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Siddiqui MH, Mohammad F, Khan MMA, Al-Whaibi MH (2012) Cumulative effect of nitrogen and sulphur on Brassica juncea L. genotypes under NaCl stress. Protoplasma 249:139–153

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui MH, Al-Whaibi MH, Faisal M, Al Sahli AA (2014) Nano-silicon dioxide mitigates the adverse effects of salt stress on Cucurbita pepo L. Environ Toxicol Chem 33(11):2429–2437

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui MH, Al-Whaibi MH, Firoz M, Al-Khaishany MY (2015) Role of nanoparticles in plants. In: Nanotechnology and plant sciences. Springer, Cham, pp 19–35

    Google Scholar 

  • Sillen WM, Thijs S, Abbamondi GR, Janssen J, Weyens N, White JC, Vangronsveld J (2015) Effects of silver nanoparticles on soil microorganisms and maize biomass are linked in the rhizosphere. Soil Biol Biochem 91:14–22

    Article  CAS  Google Scholar 

  • Smitha SL, Gopchandran KG (2013) Surface enhanced Raman scattering, antibacterial and antifungal active triangular gold nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc 102:114–119

    Article  CAS  PubMed  Google Scholar 

  • Song G, Gao Y, Wu H, Hou W, Zhang C, Ma H (2012) Physiological effect of anatase TiO2 nanoparticles on Lemna minor. Environ Toxicol Chem 31:2147–2152

    Article  CAS  PubMed  Google Scholar 

  • Srinivasa-Gopalan S, Yarema KJ (2007) Nanotechnologies for the life sciences: dendrimers in cancer treatment and diagnosis, vol 7. Wiley, New York

    Google Scholar 

  • Stephenson C, Hubler A (2015) Stability and conductivity of self assembled wires in a transverse electric field. Sci Rep 5:15044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan WM, Hou N, Pang S, Zhu XF, Li ZH, Wen LX, Duan LS (2012) Improved biological effects of uniconazole using porous hollow silica nanoparticles as carriers. Pest Manag Sci 68(3):437–443

    Article  CAS  PubMed  Google Scholar 

  • Taniguchi N (1974) On the basic concept of nanotechnology. International Conference on Precision Engineering (ICPE), Tokyo, Japan, pp 18–23

    Google Scholar 

  • Tara NY, Gonchar OM, Lopatko KG, Batsmanova LM, Patyka MV, Volkogon MV (2014) The effect of colloidal solution of molybdenum nanoparticles on the microbial composition in rhizosphere of Cicer arietinum L. Nanoscale Res Lett 9:289

    Article  CAS  Google Scholar 

  • Thakkar KN, Mhatre SS, Parikh RY (2010) Biological synthesis of metallic nanoparticles. Nanomedicine 6(2):257–262

    Article  CAS  PubMed  Google Scholar 

  • Tomalia DA, Frechet JMJ (2002) Discovery of dendrimers and dendritic polymers: a brief historical perspective. J Polym Sci A 9:2719

    Article  CAS  Google Scholar 

  • Trivedi AK, Hemantaranjan A (2017) Special Supplement 5. Adv Plant Physiol 15:106

    Google Scholar 

  • Villagarcia H, Dervishi E, de Silva K, Biris AS, Khodakovskaya MV (2012) Surface chemistry of carbon nanotubes impacts the growth and expression of water channel protein in tomato plants. Small 8:2328–2334

    Article  CAS  PubMed  Google Scholar 

  • Wei C, Yamato M, Wei ZX, Tsumoto K, Yoshimura T, Ozawa T, Chen YJ (2007) Genetic nanomedicine and tissue engineering. Med Clin N Am 91:889–898

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Watts DJ (2005) Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicol Lett 158:122–132

    Article  CAS  PubMed  Google Scholar 

  • Yang F, Hong F, You W, Liu C, Gao F, Wu C, Yang P (2006) Influence of nano-anatase TiO2 on the nitrogen metabolism of growing spinach. Biol Trace Elem Res 110(2):179–190

    Article  CAS  PubMed  Google Scholar 

  • Yang F, Liu C, Gao F, Su M, Wu X, Zheng L (2007) The improvement of spinach growth by nano-anatase TiO2 treatment is related to nitrogen photoreduction. Biol Trace Elem Res 119:77–88

    Article  CAS  PubMed  Google Scholar 

  • Zabrieski Z, Morrell E, Hortin J, Dimkpa C, McLean J, Britt D, Anderson A (2015) Pesticidal activity of metal oxide nanoparticles on plant pathogenic isolates of Pythium. Ecotoxicology 24(6):1305–1314

    Article  CAS  PubMed  Google Scholar 

  • Zambrano-Zaragoza ML, Mercado-Silva E, Gutiérrez-Cortez E, Castaño-Tostado E, Quintanar-Guerrero D (2011) Optimization of nanocapsules preparation by the emulsion-diffusion method for food applications. LWT-Food Sci Technol 44:1362–1368

    Article  CAS  Google Scholar 

  • Zaytseva O, Neumann G (2016) Carbon nanomaterials: production, impact on plant development, agricultural and environmental applications. Chem Biol Technol Agric 3:17

    Article  CAS  Google Scholar 

  • Zhang WX (2003) Nanoscale iron particles for environmental remediation: an overview. J Nanopart Res 5:323–332

    Article  CAS  Google Scholar 

  • Zhang L, Webster TJ (2009) Nanotechnology and nanomaterials: promises for improved tissue regeneration. Nano Today 4:66–80

    Article  CAS  Google Scholar 

  • Zhao L, Sun Y, Hernandez-Viezcas JA, Servin AD, Hong J, Niu G et al (2013) Influence of CeO2 and ZnO nanoparticles on cucumber physiological markers and bioaccumulation of Ce and Zn: a life cycle study. J Agric Food Chem 61(49):11945–11951

    Article  CAS  PubMed  Google Scholar 

  • Zheng L, Hong F, Lu S, Liu C (2005) Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biol Trace Elem Res 104(1):83–91

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rasool, A., Shah, W.H., Tahir, I., Rehman, R.U. (2019). Application of Nanoparticles in Crop Production and Protection. In: Prasad, R. (eds) Plant Nanobionics. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-16379-2_9

Download citation

Publish with us

Policies and ethics