Skip to main content

Current TDM-PON Technologies

  • Chapter
Springer Handbook of Optical Networks

Zusammenfassung

This chapter describes many aspects of time-division multiplexing-passive optical network (-) technology. TDM-PON is the architecture for optical access systems preferred by many network operators, due to its low operational and capital expenses. After the overview, topics related to the physical layer, such as burst-mode transmission and analog video distribution, are addressed. Then, topics in the higher layers of the network, such as the access control technologies, dynamic bandwidth allocation, security and privacy issues, protection switching and methods to improve energy efficiency like sleep modes, are described in detail for both ITU-T- and IEEE-based PONs. Finally, we conclude with a section on technologies beyond 10G PON.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • J.R. Stern, J.W. Balance, D.W. Faulkner, S. Hornung, D.B. Payne, K. Oakely: Passive optical local networks for telephony applications and beyond, Electron. Lett. 23(24), 1255–1256 (1987)

    Article  Google Scholar 

  • K. Kumozaki: Optical access systems: Present state and future directions, NTT Tech. Rev. 6(5), 1–7 (2008)

    Google Scholar 

  • FSAN: https://www.fsan.org/

  • ITU-T Recommendation G.983 Series: Broadband passive optical network (2001)

    Google Scholar 

  • F. Effenberger, H. Ichibangase, H. Yamashita: Advances in broadband passive optical networking technologies, IEEE Commun. Mag. 39(12), 118–124 (2001)

    Article  Google Scholar 

  • G. Kramer, G. Pesavento: Ethernet passive optical network (EPON): Building a next-generation optical access network, IEEE Commun. Mag. 40(2), 66–73 (2002)

    Article  Google Scholar 

  • IEEE Std 802.3ah-2004: IEEE standard for information technology – Local and metropolitan area networks – Part 3: CSMA/CD access method and physical layer specifications amendment: Media access control parameters, physical layers, and management parameters (2004)

    Google Scholar 

  • ITU-T Recommendation G.984 Series: Gigabit-capable passive optical network (G-PON) (2008)

    Google Scholar 

  • ITU-T Recommendation G.987 Series: 10 Gigabit-capable passive optical network (XG-PON) (2012)

    Google Scholar 

  • IEEE 802.3av-2009: IEEE standard for information technology – Local and metropolitan area networks – Specific requirements – Part 3: CSMA/CD access method and physical layer specifications amendment 1: Physical layer specifications and management parameters for 10 Gb/s passive optical networks (2009)

    Google Scholar 

  • ITU-T Recommendation G.9807 Series: 10 Gigabit-capable symmetric passive optical network (XGS-PON) (2016)

    Google Scholar 

  • ITU-T Recommendation G.983.3 – Amendment 2: A broadband optical access system with increased service capability by wavelength allocation (2005)

    Google Scholar 

  • ITU-T Recommendation G.984.2 – Amendment 2: Gigabit-capable passive optical networks (G-PON): Physical media dependent (PMD) layer specification amendment 2 (2008)

    Google Scholar 

  • ITU-T Recommendation G.984.6: Gigabit-capable passive optical networks (GPON): Reach extention (2008)

    Google Scholar 

  • X.Z. Qiu: Burst-mode receiver technology for short synchronization. In: Opt. Fiber Commun. Conf. (2013), https://doi.org/10.1364/OFC.2013.OW3G.4

    Chapter  Google Scholar 

  • M.R. Phillips, D.M. Ott: Crosstalk due to optical fiber nonlinearities in WDM CATV lightwave systems, J. Lightwave Technol. 17(10), 1782–1792 (1999)

    Article  Google Scholar 

  • M. Aviles, K. Litvin, J. Wang, B. Colella, F.J. Effenberger, F. Tian: Raman crosstalk in video overlay passive optical networks. In: Opt. Fiber Commun. Conf. (2004)

    Google Scholar 

  • G. Kramer, B. Mukherjee, G. Pesavento: IPACT a dynamic protocol for an Ethernet PON (EPON), IEEE Commun. Mag. 40(2), 74–80 (2002)

    Article  Google Scholar 

  • M.P. McGarry, M. Maier, M. Reisslein: Ethernet PONs: Asurvey of dynamic bandwidth allocation (DBA) algorithms, IEEE Commun. Mag. 42(8), S8–S15 (2004)

    Article  Google Scholar 

  • B. Skubic, J. Chen, J. Ahmed, B. Chen, L. Wosinska, B. Mukherjee: Dynamic bandwidth allocation for long-reach PON: Overcoming performance degradation, IEEE Commun. Mag. 48(11), 100–108 (2010)

    Article  Google Scholar 

  • M.-S. Han, H. Yoo, B.-Y. Yoon, B. Kim, J.-S. Koh: Efficient dynamic bandwidth allocation for FSAN-compliant GPON, IEEE J. Opt. Netw. 7(8), 783–795 (2008)

    Article  Google Scholar 

  • I.S. Reed, G. Solomon: Polynomial codes over certain finite fields, J. Soc. Ind. Appl. Math. 8(2), 300–304 (1960)

    Article  MathSciNet  Google Scholar 

  • IEEE 802.3av-2009: IEEE standard for information technology – Local and metropolitan area networks – Specific requirements – Part 3: CSMA/CD access method and physical layer specifications amendment 1: Physical layer specifications and management parameters for 10 Gb/s passive optical networks (2009)

    Google Scholar 

  • ITU-T Recommendation Series G Supplement 39: Optical system design and engineering considerations (2008)

    Google Scholar 

  • ISO/IEC 18033-3: Information technology - Security techniques - Encryption algorithms - Part 3: Block ciphers (2010)

    Google Scholar 

  • IEEE P1904.1/D3.1: IEEE draft standard for service interoperability in Ethernet passive optical networks (SIEPON) (2016)

    Google Scholar 

  • ITU-T Recommendation Series G Supplement 51: Passive optical network protection considerations (2017)

    Google Scholar 

  • T. Nishitani, J. Mizoguchi, H. Mukai: Experimental study of Type B protection for a TWDM-PON system, J. Opt. Commun. Netw. 7(3), A414–A420 (2015)

    Article  Google Scholar 

  • ITU-T Recommendation Series G Supplement 54: Ethernet linear protection switching (2015)

    Google Scholar 

  • T. Sakamoto: Protection schemes beyond currently defined in FTTx. In: Natl. Fiber Opt. Eng. Conf. (2013), https://doi.org/10.1364/NFOEC.2013.NM2I.6

    Chapter  Google Scholar 

  • M.P. Mills: The cloud begins with coal: Big data, big networks, big infrastructure – An overview of the electricity used by the global digital ecosystem, http://www.cepi.org/news/cloud-begins-coal-overview-electricity-used-global-digital-ecosystem (2013)

  • GreenTouch: Mission to deliver the architecture, specifications and roadmap to increase network energy efficiency by a factor of 1000 compared to 2010 levels, https://s3-us-west-2.amazonaws.com/belllabs-microsite-greentouch/index.html (2015)

  • Recommendation ITU-T G.987.3: 10-Gigabit-capable passive optical networks (XG-PON): Transmission convergence (TC) layer specification (2014)

    Google Scholar 

  • Recommendation ITU-T G.989.3: 40-Gigabit-capable passive optical networks (NG-PON2): Transmission convergence layer specification (2015)

    Google Scholar 

  • D.A. Khotimsky, D. Zhang, L. Yuan, R.O.C. Hirafuji, D.R. Campelo: Unifying sleep and doze modes for energy-efficient PON systems, IEEE Commun. Lett. 18(4), 688–691 (2014)

    Article  Google Scholar 

  • D. Suvakovic, H. Chow, D. van Veen, J. Galaro, B. Farah, N.P. Anthapadmanabhan, P. Vetter, A. Dupas, R. Boislaigue: Low energy bit-interleaving downstream protocol for passive optical networks. In: IEEE Online Conf. Green Commun. (2012) pp. 26–31

    Google Scholar 

  • C. Van Praet, H. Chow, D. Suvakovic, D. Van Veen, A. Dupas, R. Boislaigue, R. Farah, M.F. Lau, J. Galaro, G. Qua, N.P. Anthapadmanabhan, G. Torfs, X. Yin, P. Vetter: Demonstration of low-power bit-interleaving TDM PON, Opt. Express 20, B7–B14 (2012)

    Article  Google Scholar 

  • D.T. van Veen, V.E. Houtsma: Proposals for cost-effectively upgrading passive optical networks to a 25G line rate, J. Lightwave Technol. 35(6), 1180–1187 (2017)

    Article  Google Scholar 

  • V. Houtsma, D. van Veen, E. Harstead: Recent progress on standardization of next-generation 25, 50, and 100G EPON, J. Lightwave Technol. 35(6), 1228–1234 (2017)

    Article  Google Scholar 

  • IEEE P802.3ca 50G-EPON Task Force: Physical layer specifications and management parameters for 25 Gb/s and 50 Gb/s passive optical networks, http://www.ieee802.org/3/ca/index.shtml (2020)

  • R. Koma, M. Fujiwara, J. Kani, S. Kim, T. Suzuki, K. Suzuki, A. Otaka: Demonstration of real-time burst-mode digital coherent reception with wide dynamic range in DSP-based PON upstream, J. Lightwave Technol. 35(8), 1392–1398 (2017)

    Article  Google Scholar 

  • D. Qian, E. Mateo, M.-F. Huang: A 105 km reach fully passive 10G-PON using a novel digital OLT. In: Eur. Conf. Exhib. Opt. Commun. (2012), https://doi.org/10.1364/ECEOC.2012.Tu.1.B.2

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun-ichi Kani or Doutje van Veen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Cite this chapter

Kani, Ji., van Veen, D. (2020). Current TDM-PON Technologies. In: Mukherjee, B., Tomkos, I., Tornatore, M., Winzer, P., Zhao, Y. (eds) Springer Handbook of Optical Networks. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-030-16250-4_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16250-4_27

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16249-8

  • Online ISBN: 978-3-030-16250-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics