Skip to main content

Sequential Embedding Induced Text Clustering, a Non-parametric Bayesian Approach

  • Conference paper
  • First Online:
Advances in Knowledge Discovery and Data Mining (PAKDD 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11441))

Included in the following conference series:

Abstract

Current state-of-the-art nonparametric Bayesian text clustering methods model documents through multinomial distribution on bags of words. Although these methods can effectively utilize the word burstiness representation of documents and achieve decent performance, they do not explore the sequential information of text and relationships among synonyms. In this paper, the documents are modeled as the joint of bags of words, sequential features and word embeddings. We proposed Sequential Embedding induced Dirichlet Process Mixture Model (SiDPMM) to effectively exploit this joint document representation in text clustering. The sequential features are extracted by the encoder-decoder component. Word embeddings produced by the continuous-bag-of-words (CBOW) model are introduced to handle synonyms. Experimental results demonstrate the benefits of our model in two major aspects: (1) improved performance across multiple diverse text datasets in terms of the normalized mutual information (NMI); (2) more accurate inference of ground truth cluster numbers with regularization effect on tiny outlier clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://qwone.com/~jason/20Newsgroups/.

  2. 2.

    http://trec.nist.gov/data/microblog.html.

  3. 3.

    http://mattmahoney.net/dc/text8.zip.

References

  1. Berkhin, P.: A survey of clustering data mining techniques. In: Kogan, J., Nicholas, C., Teboulle, M. (eds.) Grouping Multidimensional Data, pp. 25–71. Springer, Heidelberg (2006). https://doi.org/10.1007/3-540-28349-8_2

    Chapter  Google Scholar 

  2. Blei, D.M., Jordan, M.I.: Variational inference for Dirichlet process mixtures. Bayesian Anal. 1(1), 121–143 (2006). https://doi.org/10.1214/06-BA104

    Article  MathSciNet  MATH  Google Scholar 

  3. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)

    MATH  Google Scholar 

  4. Cai, D., He, X., Han, J.: SRDA: an efficient algorithm for large-scale discriminant analysis. IEEE Trans. Knowl. Data Eng. 20(1), 1–12 (2008)

    Article  Google Scholar 

  5. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. In: EMNLP 2014, pp. 1724–1734. Association for Computational Linguistics, Doha, Qatar, October 2014. http://www.aclweb.org/anthology/D14-1179

  6. Duan, T., Pinto, J.P., Xie, X.: Parallel clustering of single cell transcriptomic data with split-merge sampling on Dirichlet process mixtures. Bioinformatics p. bty702 (2018). https://doi.org/10.1093/bioinformatics/bty702

  7. Duan, T., Srihari, S.N.: Pseudo boosted deep belief network. In: Villa, A.E.P., Masulli, P., Pons Rivero, A.J. (eds.) ICANN 2016. LNCS, vol. 9887, pp. 105–112. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44781-0_13

    Chapter  Google Scholar 

  8. Duan, T., Srihari, S.N.: Layerwise interweaving convolutional LSTM. In: Mouhoub, M., Langlais, P. (eds.) AI 2017. LNCS, vol. 10233, pp. 272–277. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-319-57351-9_31

    Chapter  Google Scholar 

  9. Gomez, J.C., Moens, M.F.: PCA document reconstruction for email classification. Comput. Stat. Data Anal. 56(3), 741–751 (2012)

    Article  MathSciNet  Google Scholar 

  10. Gu, Y., Chen, S., Marsic, I.: Deep multimodal learning for emotion recognition in spoken language. CoRR abs/1802.08332 (2018)

    Google Scholar 

  11. Gu, Y., Li, X., Chen, S., Zhang, J., Marsic, I.: Speech intention classification with multimodal deep learning. In: Mouhoub, M., Langlais, P. (eds.) AI 2017. LNCS (LNAI), vol. 10233, pp. 260–271. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57351-9_30

    Chapter  Google Scholar 

  12. Hori, C., Hori, T., Lee, T., Sumi, K., Hershey, J.R., Marks, T.K.: Attention-based multimodal fusion for video description. CoRR abs/1701.03126 (2017)

    Google Scholar 

  13. Hotho, A., Staab, S., Maedche, A.: Ontology-based text clustering. In: Proceedings of the IJCAI 2001 Workshop Text Learning: Beyond Supervision (2001)

    Google Scholar 

  14. Huang, R., Yu, G., Wang, Z.: Dirichlet process mixture model for document clustering with feature partition. IEEE Trans. Knowl. Data Eng. 25(8), 1748–1759 (2013)

    Article  Google Scholar 

  15. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. CoRR abs/1412.6980 (2014). http://arxiv.org/abs/1412.6980

  16. Li, Y., et al.: Towards differentially private truth discovery for crowd sensing systems. CoRR abs/1810.04760 (2018)

    Google Scholar 

  17. Liu, M., Chen, L., Liu, B., Wang, X.: VRCA: a clustering algorithm for massive amount of texts. In: IJCAI 2015, pp. 2355–2361. AAAI Press (2015). http://dl.acm.org/citation.cfm?id=2832415.2832576

  18. Luong, M., Pham, H., Manning, C.D.: Effective approaches to attention-based neural machine translation. CoRR abs/1508.04025 (2015)

    Google Scholar 

  19. Mikolov, T., et al.: Distributed representations of words and phrases and their compositionality. In: Burges, C.J.C., Bottou, L., Welling, M., Ghahramani, Z., Weinberger, K.Q. (eds.) NIPS, pp. 3111–3119. Curran Associates, Inc. (2013)

    Google Scholar 

  20. Mikolov, T., Yih, W., Zweig, G.: Linguistic regularities in continuous space word representations. In: HLT-NAACL, pp. 746–751 (2013)

    Google Scholar 

  21. Neal, R.M.: Markov chain sampling methods for Dirichlet process mixture models. J. Comput. Graph. Stat. 9(2), 249–265 (2000)

    MathSciNet  Google Scholar 

  22. Nie, Y., Han, Y., Huang, J., Jiao, B., Li, A.: Attention-based encoder-decoder model for answer selection in question answering. Front. Inf. Technol. Electron. Eng. 18(4), 535–544 (2017)

    Article  Google Scholar 

  23. Rangrej, A., Kulkarni, S., Tendulkar, A.V.: Comparative study of clustering techniques for short text documents. In: Proceedings of the 20th International Conference Companion on World Wide Web, WWW 2011, pp. 111–112. ACM, New York (2011)

    Google Scholar 

  24. Shafiei, M.M., Milios, E.E.: Latent Dirichlet co-clustering. In: Sixth International Conference on Data Mining (ICDM 2006), pp. 542–551, December 2006

    Google Scholar 

  25. Wang, F., Zhang, C., Li, T.: Regularized clustering for documents. In: SIGIR 2007, pp. 95–102. ACM, New York (2007)

    Google Scholar 

  26. Xun, G., Li, Y., Zhao, W.X., Gao, J., Zhang, A.: A correlated topic model using word embeddings. In: IJCAI 2017, pp. 4207–4213 (2017)

    Google Scholar 

  27. Yin, J., Wang, J.: A model-based approach for text clustering with outlier detection. In: 2016 IEEE 32nd International Conference on Data Engineering (ICDE), pp. 625–636, May 2016

    Google Scholar 

  28. Yin, J., Wang, J.: A Dirichlet multinomial mixture model-based approach for short text clustering. In: KDD 2014, pp. 233–242. ACM, New York (2014)

    Google Scholar 

  29. Yu, G., Huang, R., Wang, Z.: Document clustering via Dirichlet process mixture model with feature selection. In: KDD 2010, pp. 763–772. ACM, New York (2010)

    Google Scholar 

  30. Zhang, H., Li, Y., Ma, F., Gao, J., Su, L.: Texttruth: an unsupervised approach to discover trustworthy information from multi-sourced text data. In: KDD 2018, pp. 2729–2737. ACM, New York (2018). https://doi.org/10.1145/3219819.3219977

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiehang Duan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Duan, T., Lou, Q., Srihari, S.N., Xie, X. (2019). Sequential Embedding Induced Text Clustering, a Non-parametric Bayesian Approach. In: Yang, Q., Zhou, ZH., Gong, Z., Zhang, ML., Huang, SJ. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2019. Lecture Notes in Computer Science(), vol 11441. Springer, Cham. https://doi.org/10.1007/978-3-030-16142-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16142-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16141-5

  • Online ISBN: 978-3-030-16142-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics