Skip to main content

A Reconstruction of Quantum Mechanics

  • Chapter
  • First Online:
Philosophers Look at Quantum Mechanics

Part of the book series: Synthese Library ((SYLI,volume 406))

  • 496 Accesses

Abstract

We show that exactly the same intuitively plausible definitions of state, observable, symmetry, dynamics, and compound systems of the classical Boolean structure of intrinsic properties of systems lead, when applied to the structure of extrinsic, relational quantum properties, to the standard quantum formalism, including the Schrödinger equation and the von Neumann–Lüders Projection Rule. This approach is then applied to resolving the paradoxes and difficulties of the orthodox interpretation.

Dedicated to the memory of Ernst Specker.

This work was partially supported by an award from the John Templeton Foundation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A Boolean σ-complex is a closely connected generalization of a partial Boolean algebra (introduced in Kochen and Specker (1967a), and further studied in Kochen and Specker (1964, 1967b)).

  2. 2.

    The group \( \mathop {\mathrm {Aut}} \nolimits (Q)\) may, in fact, be construed as a topological group by defining, for each 𝜖 > 0, an 𝜖-neighborhood of the identity to be {σ∣|p σ(x) − p(x)| < 𝜖 for all x and p}. We may then directly speak of the continuity of the map σ, in place of the condition that \(p_{\sigma _t}(x)\) is continuous in t.

  3. 3.

    More precisely, we have a projective unitary representation of \(\mathbb {R}\), but such a representation of \(\mathbb {R}\) is equivalent to a vector representation. (See, e.g., Varadarajan 1968.)

  4. 4.

    Historically, of course, it was not such interferometry experiments, but rather spectroscopic experiments that lead Schrödinger to his equation.

  5. 5.

    This is reminiscent of Aristotle’s famous sea battle in De Interpretatione: “A sea battle must either take place tomorrow or not, but it is not necessary that it should take place tomorrow neither is it necessary that it should not take place, yet it is necessary that it either should or should not take place tomorrow.”

References

  • Bargmann, V. (1964). Note on Wigner’s theorem on symmetry operations. Journal of Mathematical Physics, 5, 862.

    Article  Google Scholar 

  • Beltrametti, E. G., & Cassinelli, G. (1981). The logic of quantum mechanics. Reading: Addison-Wesley.

    Google Scholar 

  • Birkhoff, G., & von Neumann, J. (1936). The logic of quantum mechanics. Annals of Mathematics, 37, 823.

    Article  Google Scholar 

  • Bohm, A. (2001). Quantum mechanics: Foundations and applications. New York: Springer

    Google Scholar 

  • Bohr, N. (1937). Causality and complementarity. Philosophy of Science, 4, 289.

    Article  Google Scholar 

  • Conway, J., & Kochen, S. (2002). The geometry of the quantum paradoxes. In R. A. Bertlemann & A. Zeilinger (Eds.), Quantum [un]speakables (p. 257). Berlin: Springer.

    Chapter  Google Scholar 

  • Conway, J., & Kochen, S. (2009). The strong free will theorem. Notices American Mathematical Society, 56, 226.

    Google Scholar 

  • Faddeev, L. D., & Yakubovskii, O. A. (2009). Lectures on quantum mechanics for mathematics students. Providence: American Mathematical Society.

    Book  Google Scholar 

  • Feynman, R. P. (1948). Space-time approach to non-relativistic quantum mechanics. Reviews of Modern Physics, 20, 36.

    Article  Google Scholar 

  • Feynman, R. P., Leighton, R. B., & Sands, M. (1966). The Feynman lectures on physics (vol. 3). Reading: Addison-Wesley.

    Google Scholar 

  • Finkelstein, D. (1963). The logic of quantum physics. Transactions of the New York Academy of Sciences, 25, 621.

    Article  Google Scholar 

  • Gleason, A. M. (1957). Measures on the closed subspaces of a Hilbert space. Journal of Mathematics and Mechanics, 6, 885.

    Google Scholar 

  • Jauch, J. M. (1968). Foundations of quantum mechanics. Reading: Addison-Wesley.

    Google Scholar 

  • Kochen, S., & Specker, E. P. (1964). The calculus of partial propositional functions, methodology and philosophy of science, Congress at Jerusalem (vol. 45).

    Google Scholar 

  • Kochen, S., & Specker, E. P. (1967a). The problem of hidden variables in quantum mechanics. Journal of Mathematics and Mechanics, 17, 59.

    Google Scholar 

  • Kochen, S., & Specker, E. P. (1967b). Logical structures arising in quantum mechanics. The theory of models, symposium at Berkeley (vol. 177).

    Google Scholar 

  • Koppelberg, S. (1989). Handbook of boolean algebras (vol. 1). Amsterdam: North-Holland.

    Google Scholar 

  • Mackey, G. W. (1963). Mathematical foundations of quantum mechanics. Amsterdam: Benjamin.

    Google Scholar 

  • Piron, C. (1976). Foundations of quantum physics. Reading: Benjamin.

    Google Scholar 

  • Reck, M., Zeilinger, A., Bernstein, H. J., & Bertani, P. (1994). Experimental realization of any discrete unitary operator. Physical Review Letters, 73, 58.

    Article  Google Scholar 

  • Uhlhorn, U. (1963). Representation of symmetric transformations in quantum mechanics. Arkiv Fysik, 23, 307.

    Google Scholar 

  • Varadarajan, V. S. (1968). The geometry of quantum theory. Princeton: Van Nostrand.

    Book  Google Scholar 

  • Wrede, E. (1927). Uber die Ablenkung von Molekularstrahlen elektrischer Dipolmolekule iminhomogenen elektrischen Feld. Z. Phys. A, 44, 261.

    Article  Google Scholar 

  • Zukowski, M., Zeilinger, A., & Horne, M. A. (1997). Realizable higher-dimensional two-particle entanglements via multiport beam splitters. Physical Review A, 55, 2564.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Kochen .

Editor information

Editors and Affiliations

Appendix: Summary Table of Concepts

Appendix: Summary Table of Concepts

 

General mechanics

Classical mechanics

Quantum mechanics

Properties

σ-complex

σ-algebra

σ-complex

 

Q = ∪B, with B a σ-algebra

B( Ω)

\(Q(\mathcal {H}\}\)

States

p : Q → [0, 1]

p : B( Ω) → [0, 1]

\(w: \mathcal {H}\to \mathcal {H}\)

 

pB, a probability measure

a probability measure

Density operator

   

\(p(x)= \mathop {\mathrm {tr}} \nolimits (wx)\)

Pure states

Extreme point

ω ∈ Ω

1 dim operator

 

of convex set

 

i.e. unit \(\phi \in \mathcal {H}\)

   

\(p(x)=\left \langle x,x\phi \right \rangle \)

Observables

\(u: B(\mathbb {R})\to Q\)

\(f:\Omega \to \mathbb {R}\)

\(A: \mathcal {H} \to \mathcal {H}\)

 

homomorphism

Borel function

Hermitean operator

Symmetries

σ : Q → Q

h :  Ω → Ω

\(u: \mathcal {H}\to \mathcal {H}\)

 

automorphism

canonical

unitary or

  

transformation

anti-unitary operator

   

σ(x) = uxu −1

Dynamics

\(\sigma :\mathbb {R}\to \mathop {\mathrm {Aut}} \nolimits (Q)\)

Liouville equation

von Neumann

 

representation

t ρ = −[H, ρ]

-Liouville equation

   

\(\partial _t w_t=-\frac {i}{\hbar } [ H, w_t] \)

Conditionalized

p(x) → p(xy)

p(x) → p(xy)

\(w\to ywy / \mathop {\mathrm {tr}} \nolimits (wy) \)

states

for x, y ∈ B in Q

= p(x ∧ y)∕p(y)

von Neumann

 

p(xy) = p(xy)∕p(y)

 

-Lüders Rule

Combined

Q 1 ⊕ Q 2

Ω1 × Ω2

\(\mathcal {H}_1 \otimes \mathcal {H}_2\)

systems

direct sum of

direct product of

tensor product of

 

σ-complexes

phase spaces

Hilbert spaces

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kochen, S. (2019). A Reconstruction of Quantum Mechanics. In: Cordero, A. (eds) Philosophers Look at Quantum Mechanics. Synthese Library, vol 406. Springer, Cham. https://doi.org/10.1007/978-3-030-15659-6_16

Download citation

Publish with us

Policies and ethics