Skip to main content

Fundamentals of Rapid Tooling

  • Chapter
  • First Online:
Incremental Forming as a Rapid Tooling Process

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSMANUFACT))

Abstract

Product development takes advantage of the use of computer-aided design (CAD) systems to define the geometry and its various dimensional characteristics. Besides, the product’s feasibility can be predicted using computer-aided engineering (CAE) software for the analysis of product performance and for the simulation of manufacturing processes without the need for physical prototypes. While this iteration strongly improves the probability of success, in many cases, a physical assessment of the real component is still needed. This often requires the creation of prototypes and tools to be produced, becoming one of the most time-consuming and costly phases in the development of new products.

The employment of rapid tooling (RT) techniques allows the development of tools for processing different materials by various technologies in a fast and inexpensive way. In such a way, RT offers great advantages both to the product development and production set-up, allowing the achievement of faster and better solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Equbal, A. Kumar Sood, M. Shamim, Rapid tooling: a major shift in tooling practice. J. Manuf. Ind. Eng. 14(3–4), 1–9 (2015)

    Google Scholar 

  2. P. Hilton, P. Jacobs, Rapid Tooling: Technologies and Industrial Applications (Marcel Dekker, New York, 2010)

    Google Scholar 

  3. P. Vasconcelos, F. Lino, R. Neto, M. Vasconcelos, Design and rapid prototyping evolution, in RPD 2002—Advanced Solutions and Development Conference (2002)

    Google Scholar 

  4. T. Andrew, Development of an expert system as applied to rapid tooling techniques for injection molding. Master’s thesis, Lehigh University (2005)

    Google Scholar 

  5. E. Tackett, Rapid Tooling (Saddleback College Advanced Technology Center, 2012)

    Google Scholar 

  6. K. Karunakaran, S. Suryakumar, A. Bernard, Hybrid Rapid Manufacturing of Metallic Objects. 14èmes Assises Europèennes du Prototypage & Fabrication Rapide (2009)

    Google Scholar 

  7. N. Hopkinson, R. Hague, P. Dickens, Rapid Manufacturing: An Industrial Revolution for the Digital Age (Wiley, West Sussex, 2007)

    Google Scholar 

  8. G.N. Levy, R. Schindel, J.P. Kruth, Rapid Manufacturing (LM) technologies, state of the art and future perspectives. CIRP Ann. Manuf. Technol. 52(2), 589–609 (2003)

    Article  Google Scholar 

  9. A. Rosochowski, A. Matuszak, Rapid tooling: the state of the art. J. Mater. Process. Technol. 106(1–3), 191–198 (2000)

    Article  Google Scholar 

  10. Wohlers, Wohlers Report 2006–2016, 3D Printing and Additive Manufacturing State of the Industry, Wohlers Associates, Denver (2006–2016)

    Google Scholar 

  11. P. Yarlagadda, L. Wee, Design, development and evaluation of 3D mold inserts using a rapid prototyping technique and powder-sintering process. Int. J. Prod. Res. 44(5), 919–938 (2006)

    Article  Google Scholar 

  12. X. Wang, M. Jiang, Z. Zhou, J. Gou, D. Hui, 3D printing of polymer matrix composites: A review and prospective. Compos. Part B Eng. 110, 442–458 (2017)

    Article  Google Scholar 

  13. ISO/ASTM International, ISO/ASTM 52900:2015—Additive manufacturing—General principles—Terminology. ISO/ASTM International (2015)

    Google Scholar 

  14. G. Gmeiner, U. Deisinger, J. Schnherr, J. Stampfl, Additive manufacturing of bioactive glasses and silicate bioceramics. J. Ceram. Sci. Technol. 6(2), 75–86 (2015)

    Google Scholar 

  15. L. Pires, Biocermicos e Biovidros para prototipagem 3D: propriedades e formulaes. Masters thesis, University of Aveiro (2011)

    Google Scholar 

  16. Q. Yao, B. Wei, Y. Guo, C. Jin, X. Du, C. Yan, J. Yan, W. Hu, Y. Xu, Z. Zhou, Y. Wang, L. Wang, Design, construction and mechanical testing of digital 3D anatomical data-based PCLHA bone tissue engineering scaffold. J. Mater. Sci. Mater. Med. 26(1) (2015)

    Google Scholar 

  17. J. Ferreira, A. Mateus, Studies of rapid soft tooling with conformal cooling channels for plastic injection moulding. J. Mater. Sci. Mater. Med. 142(2), 508–516 (2003)

    Google Scholar 

  18. W. Sames, F. List, S. Pannala, R. Dehoff, S. Babu, The metallurgy and processing science of metal additive manufacturing. Int. Mater. Rev. 61(5), 315–360 (2016)

    Article  Google Scholar 

  19. A. Pouzada, Hybrid moulds: a case of integration of alternative materials and rapid prototyping for tooling. Virtual Phys. Prototypes 4(4), 195–202 (2009)

    Article  Google Scholar 

  20. D. King, T. Tansey, Alternative materials for rapid tooling. J. Mater. Process. Technol. 121(2–3), 313–317 (2002)

    Article  Google Scholar 

  21. A. Armillotta, R. Baraggi, S. Fasoli, SLM tooling for die casting with conformal cooling channels. Int. J. Adv. Manuf. Technol. 71(1–4), 573–583 (2014)

    Article  Google Scholar 

  22. S. Campanelli, N. Contuzzi, A. Angelastro, A. Ludovico, Capabilities and performances of the selective laser melting process, in New Trends in Technologies: Devices, Computer, Communication and Industrial Systems (2010), pp. 233–252

    Google Scholar 

  23. E. Pessard, P. Mognol, J. Hascot, C. Gerometta, Complex cast parts with rapid tooling: rapid manufacturing point of view. Int. J. Addict. Manuf. Technol. 39(9–10), 898–904 (2008)

    Article  Google Scholar 

  24. J. Milovanovic, M. Stojkovic, M. Trajanovic, Metal Laser Sintering for Rapid Tooling in Application to Tyre Tread Pattern Mould. Sintering - Methods and Products (InTech, 2012)

    Google Scholar 

  25. J. Smay, S. Nadkarni, J. Xu, Direct writing of dielectric ceramics and base metal electrodes. Int. J. Appl. Ceram. Technol. 4(1), 47–52 (2007)

    Article  Google Scholar 

  26. I. Gibson, D. Rosen, B. Stucker, Sheet Lamination Processes (Additive Manufacturing Technologies, Boston, MA, 2010), pp. 223–252

    Chapter  Google Scholar 

  27. R. Friel, R. Harris, Ultrasonic additive manufacturing—a hybrid production process for novel functional products. Procedia CIRP 6, 35–40 (2013)

    Article  Google Scholar 

  28. M. Yetna NJock, E. Camposilvan, L. Gremillard, E. Maire, D. Fabrgue, D. Chicot, K. Tabalaiev, J. Adrien, Characterization of 100Cr6 lattice structures produced by robocasting. Mater. Des. 121, 345–354 (2017)

    Google Scholar 

  29. D. Kuznetsova, P. Timashev, V. Bagratashvili, E. Zagaynova, Scaffold and cell system-based bone grafts in tissue engineering (review). Sovrem. Tehnol. Med. 6(4), 201–211 (2014)

    Google Scholar 

  30. T. Hanemann, W. Bauer, R. Knitter, P. Woias, Rapid prototyping and rapid tooling techniques for the manufacturing of silicon, polymer, metal and ceramic microdevices, in MEMS/NEMS, Boston, MA (2006), pp. 801–869

    Google Scholar 

  31. A. Do, P. Wright, C. Sequin, Latest-generation SLA resins enable direct tooling for injection molding. Soc. Manuf. Eng. 5(3), 1–15 (2000)

    Google Scholar 

  32. V. Beal, C. Ahrens, P. Wendhausen, The use of stereolithography rapid tools in the manufacturing of metal powder injection molding parts. J. Braz. Soc. Mech. Sci. Eng. 26(1), 40–46 (2004)

    Article  Google Scholar 

  33. J. Temple, D. Hutton, B. Hung, P. Huri, C. Cook, R. Kondragunta, X. Jia, W. Grayson, Engineering anatomically shaped vascularized bone grafts with hASCs and 3D-printed PCL scaffolds. J. Biomed. Mater. Res. Part A 102(12), 4317–4325 (2014)

    Google Scholar 

  34. C. Mendonsa, V. Shenoy, Additive manufacturing technique in pattern making for metal casting using fused filament fabrication printer. J. Basic Appl. Eng. Res. 1(1), 10–13 (2014)

    Google Scholar 

  35. E. Malone, H. Lipson, Fab@Home: the personal desktop fabricator kit. Rapid Prototyp. J. 13(4), 245–255 (2007)

    Article  Google Scholar 

  36. M. Javaid, L. Kumar, V. Kumar, H. Abid, Product design and development using polyjet rapid prototyping technology. Control. Theory Inform. 5(3), 12–19 (2015)

    Google Scholar 

  37. O. Marwah, S. Sharif, M. Ibrahim, E. Mohamad, M. Idris, Direct rapid prototyping evaluation on multijet and fused deposition modeling patterns for investment casting. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 230(5), 949–958 (2016)

    Google Scholar 

  38. C. Hartman, V. Rosa, Benefits of 3D printing vacuum form molds. FATHOM (2014)

    Google Scholar 

  39. D. Dippenaar, K. Schreve, 3D printed tooling for vacuum-assisted resin transfer moulding. Int. J. Adv. Manuf. Technol. 64(5–8), 755–767 (2013)

    Article  Google Scholar 

  40. J. Kruth, P. Mercelis, J. Van Vaerenbergh, L. Froyen, M. Rombouts, Binding mechanisms in selective laser sintering and selective laser melting. Rapid Prototyp. J. 11(1), 26–36 (2005)

    Article  Google Scholar 

  41. C. Cheah, C. Chua, C. Lee, C. Feng, K. Totong, Rapid prototyping and tooling techniques: a review of applications for rapid investment casting. Int. J. Adv. Manuf. Technol. 25(3–4), 308–320 (2005)

    Article  Google Scholar 

  42. J. Wang, X. Wei, P. Christodoulou, H. Hermanto, Rapid tooling for zinc spin casting using arc metal spray technology. J. Mater. Process. Technol. 146(3), 283–288 (2004)

    Article  Google Scholar 

  43. N. Volpato, J. Amorim, Systematic to overcome CNC machining limitation in rapid tooling, in 19th International Congress of Mechanical Engineering (2007)

    Google Scholar 

  44. M. Zahid, K. Case, D. Watts, Cutting Tools in Finishing Operations for CNC Rapid Manufacturing Processes: Experimental Studies. Int. J. Mech. Aerosp. Ind. Mechatron. Eng. 8(6), 1108–1112 (2014)

    Google Scholar 

  45. S. Stoyan, Y. Chen, Multi-piece mold design based on linear mixed-integer program toward guaranteed optimality (2010)

    Google Scholar 

  46. R. Pastirik, D. Urgela, Device for production of prototype moulds by milling. Achieves Foundry Eng. 11(si.1), 45–50 (2011)

    Google Scholar 

  47. T. Himmer, T. Nakagawa, M. Anzai, Lamination of metal sheets. Comput. Ind. 39(1), 27–33 (1999)

    Article  Google Scholar 

  48. S. Yoo, D. Walczyk, Advanced Design and Development of Profiled Edge Laminae Tools. J. Manuf. Process. 7(2), 162–173 (2005)

    Article  Google Scholar 

  49. S. Yoo, D. Walczyk, An adaptive slicing algorithm for profiled edge laminae tooling. Int. J. Precis. Eng. Manuf. 8(3), 64–71 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Afonso .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s), under exclusive licence to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Afonso, D., Alves de Sousa, R., Torcato, R., Pires, L. (2019). Fundamentals of Rapid Tooling. In: Incremental Forming as a Rapid Tooling Process. SpringerBriefs in Applied Sciences and Technology(). Springer, Cham. https://doi.org/10.1007/978-3-030-15360-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-15360-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-15359-5

  • Online ISBN: 978-3-030-15360-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics