Skip to main content

Analysis of Generalized BBM Equations: Symmetry Groups and Conservation Laws

  • Chapter
  • First Online:
  • 534 Accesses

Abstract

In this work we study a generalized BBM equation from the point of view of the theory of symmetry reductions in partial differential equations. We obtain the Lie symmetries, then we use the transformation groups to reduce the equations into ordinary differential equations. Physical interpretation of these reductions and some exact solutions are also provided.

Local conservation laws are continuity equations that provide conserved quantities of physical importance for all solutions of a particular equation. In addition, the existence of an infinite hierarchy of local conservation laws of a partial differential equation is a strong indicator of its integrability. For any particular partial differential equation, a complete classification of all local low-order conservation laws can be derived by using the multiplier method.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. K. Al-Khaled, S. Momani, A. Alawneh, Approximate wave solutions for generalized Benjamin–Bona–Mahony–Burgers equations. Appl. Math. Comput. 171, 281–292 (2005)

    MathSciNet  MATH  Google Scholar 

  2. S.C. Anco, Generalization of Noether’s theorem in modern form to non-variational partial differential equations, in Recent Progress and Modern Challenges in Applied Mathematics, Modelling and Computational Science, vol. 79 (Springer, Berlin, 2017), pp. 119–182

    MATH  Google Scholar 

  3. S.C. Anco, G.W. Bluman, Direct construction of conservation laws from field equations. Phys. Rev. Lett. 78, 2869–2942 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. S.C. Anco, G.W. Bluman, Direct construction method for conservation laws of partial differential equations. Part I: examples of conservation law classifications. Eur. J. Appl. Math. 13, 545–566 (2002)

    MATH  Google Scholar 

  5. S.C. Anco, G.W. Bluman, Direct construction method for conservation laws of partial differential equations. Part II: general treatment. Eur. J. Appl. Math. 41, 567–585 (2002)

    MATH  Google Scholar 

  6. T.B. Benjamin, J.L. Bona, J.J. Mahony, Model equations for long waves in non-linear dispersive systems. Philos. Trans. R. Soc. A 272, 47–78 (1972)

    MATH  Google Scholar 

  7. G.W. Bluman, S.C. Anco, Symmetry and Integration Methods for Differential Equations (Springer, New York, 2002)

    MATH  Google Scholar 

  8. G.W. Bluman, A. Cheviakov, S.C. Anco, Applications of Symmetry Methods to Partial Differential Equations (Springer, New York, 2010)

    Book  MATH  Google Scholar 

  9. G.W. Bluman, S. Kumei, Symmetries and Differential Equations in Applied Mathematical Sciences, vol. 81 (Springer, New York, 1989)

    Book  MATH  Google Scholar 

  10. M.S. Bruzón, M.L. Gandarias, J.C. Camacho, Symmetry for a family of BBM equations. J. Nonlinear Math. Phys. 15, 81–90 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. M.S. Bruzón, M.L. Gandarias, Travelling wave solutions for a generalized Benjamin–Bona–Mahony–Burgers equation. Int. J. Math. Models Methods Appl. Sci. 2, 103–108 (2008)

    Google Scholar 

  12. M.S. Bruzón, M.L. Gandarias, Exact solutions for a generalized Benjamin–Bona–Mahony–Burgers equation. J. Nonlinear Syst. Appl. 151–154 (2009)

    Google Scholar 

  13. M.S. Bruzón, M.L. Gandarias, Nonlocal symmetries for a family Benjamin–Bona–Mahony–Burgers equations. Some exact solutions. Int. J. Appl. Math. Inform. 5, 180–187 (2011)

    Google Scholar 

  14. M.S. Bruzón, M.L. Gandarias, On the group classification and conservation laws of the self–adjoint of a family Benjamin–Bona–Mahony equations. Int. J. Math. Model Methods Appl. Sci. 6, 527–534 (2012)

    Google Scholar 

  15. M.S. Bruzón, T.M. Garrido, R. de la Rosa, Conservation laws and exact solutions of a generalized Benjamin–Bona–Mahony–Burgers equation. Chaos, Solitons and Fractals 89, 578–583 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. M.S. Bruzón, T.M. Garrido, R. de la Rosa, Symmetry reductions for a generalized fifth order KdV equation. Appl. Math. Nonlinear Sci. 2(2), 485–494 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. M.S. Bruzón, E. Recio, T.M. Garrido, A.P. Márquez, Conservation laws, classical symmetries and exact solutions of the generalized KdV-Burgers-Kuramoto equation. Open Phys. 15, 433–439 (2017)

    Article  Google Scholar 

  18. P.A. Clarkson, New similarity reductions and Painlevé analysis for the symmetric regularised long wave and modified Benjamin–Bona–Mahoney equations. J. Phys. A Math. Gen. 22, 3281–3848 (1989)

    MATH  Google Scholar 

  19. P.A. Clarkson, M.D. Kruskal M D, New similarity solutions of the Boussinesq equation. J. Math. Phys. 30, 2201–2213 (1989)

    Google Scholar 

  20. R. de la Rosa, M.L. Gandarias, M.S. Bruzón, On symmetries and conservation laws of a Gardner equation involving arbitrary functions. Appl. Math. Comput. 290, 125–134 (2016)

    MathSciNet  MATH  Google Scholar 

  21. R. de la Rosa, M.L. Gandarias, M.S. Bruzón, Symmetry group analysis of a fifth-order KdV equation with variable coefficients. J. Comput. Theor. Transp. 45, 275–289 (2016)

    Article  MathSciNet  Google Scholar 

  22. R. de la Rosa, E. Recio, T.M. Garrido, M.S. Bruzón, On a generalized variable-coefficient Gardner equation with linear damping and dissipative terms. Math. Methods Appl. Sci. 41, 7158–7169 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  23. P. Eloe, M. Usman, Bifurcations in steady state solutions of a class of nonlinear dispersive wave equations. Nonlinear Stud. 19(2), 215–224 (2012)

    MathSciNet  MATH  Google Scholar 

  24. M.L. Gandarias, C.M. Khalique, Nonlinearly self-adjoint, conservation laws and solutions for a forced BBM equation. Abstr. Appl. Anal. 2014, 1–5 (2014)

    MathSciNet  MATH  Google Scholar 

  25. T.M. Garrido, M.S. Bruzón, Lie point symmetries and travelling wave solutions for the generalized Drinfeld–Sokolov system. J. Comput. Theor. Transp. 45(4), 290–298 (2016)

    Article  MathSciNet  Google Scholar 

  26. T.M. Garrido, A.A. Kasatkin, M.S. Bruzón, R.K. Gazizov, Lie symmetries and equivalence transformations for the Barenblatt–Gilman model. J. Comput. Appl. Math. 318, 253–258 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  27. N.H. Ibragimov, CRC Handbook of Lie Group Analysis of Differential Equations, vols. 1–3 (CRC Press, Boca Raton, 1994–1996)

    MATH  Google Scholar 

  28. N.H. Ibragimov, The answer to the question put to me by L.V. Ovsyannikov 33 years ago. Arch. ALGA 3, 53–80 (2006)

    Google Scholar 

  29. N.H. Ibragimov, A new conservation theorem. J. Math. Anal. Appl. 333, 311–328 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  30. N.H. Ibragimov, Quasi self-adjoint differential equations. Arch. ALGA 4, 55–60 (2007)

    Google Scholar 

  31. M. Molati, C.M. Khalique, Lie symmetry analysis of the time-variable coefficient B-BBM equation. Adv. Differ. Equ. 2012, 1–8 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. M. Molati, C.M. Khalique, Symmetry classification and invariant solutions of the variable coefficient BBM equation. Appl. Math. Comput. 219, 7917–7922 (2013)

    MathSciNet  MATH  Google Scholar 

  33. P.J. Olver, Applications of Lie Groups to Differential Equations, 2nd edn. Graduate Texts in Mathematics, vol. 107 (Springer, Berlin, 1993)

    Google Scholar 

  34. I. Simbanefayi, C.M. Khalique, Travelling wave solutions and conservation laws for the Korteweg-de-Vries-Benjamin-Bona-Mahony equation. Results Phys. 8, 57–63 (2018)

    Article  Google Scholar 

  35. M. Wang, Long time behavior of a damped generalized BBM equation in low regularity spaces. Math. Methods Appl. Sci. 38, 4852–4866 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. L. Wang, J. Zhou, L. Ren, The exact solitary wave solutions for a family of BBM equation. Int. J. Nonlinear Sci. 1, 58–64 (2006)

    MathSciNet  MATH  Google Scholar 

  37. J. Weiss, M. Tabor, G. Carnevale, The Painlevé property for partial differential equations. J. Math. Phys. 24(3), 522–526 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  38. S. Yandong, Explicit and exact special solutions for BBM–like B (m, n) equations with fully nonlinear dispersion. Chaos, Solitons Fractals 25, 1083–1091 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

The authors acknowledge the financial support from Junta de Andalucía group FQM-201, and they express their sincere gratitude to the Plan Propio de Investigación de la Universidad de Cádiz.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Bruzón .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bruzón, M.S., Garrido, T.M., de la Rosa, R. (2019). Analysis of Generalized BBM Equations: Symmetry Groups and Conservation Laws. In: Dutta, H., Kočinac, L.D.R., Srivastava, H.M. (eds) Current Trends in Mathematical Analysis and Its Interdisciplinary Applications. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-15242-0_7

Download citation

Publish with us

Policies and ethics