Skip to main content

Arbuscular Mycorrhizal Symbiosis in Salt-Tolerance Species and Halophytes Growing in Salt-Affected Soils of South America

  • Chapter
  • First Online:
Mycorrhizal Fungi in South America

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Arbuscular mycorrhizal fungi (AMF) are ubiquitous soil microorganisms that establish a direct physical link between soil and plant roots constituting an integral component of the natural ecosystems being present in saline environment. These fungi are associated with the roots of over 80% terrestrial plant species including halophytes. Compared with other parts of the world, published information on halophytes vegetation adapted to saline environments in South America, and even more so on their utilization, is quite scarce. This work showed the mycorrhizal status of halophytes and salt-tolerance species capable of growing in salty soils, used as a forage resource for livestock. Specially we made a focus in two saline soils of Argentinean Pampas and Salinas Grandes dominated by Lotus tenuis and members of Chenopodiaceae family respectively. This data is of relevance because they often constitute the only forage resource for the possible way to utilize these plants to remediate salt-affected soils.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abril A, Aiazzi M, Torres P, Argüello J (2000) Nutritional value of Atriplex cordobensis grown in dry Chaco of Argentina. Rev Arg Prod An 20(3–4):179–185

    Google Scholar 

  • Aiazzi M, Abril A, Torres P, Di Rienzo J, Argüello J (1999) Seasonal variations in chemical composition of leaves and stems of Atriplex cordobensis (Gandoger et Stuckert), female and male plants. Phyton 65:173–178

    CAS  Google Scholar 

  • Al-Karaki GN (2000) Growth of mycorrhizal tomato and mineral acquisition under salt stress. Mycorrhiza 10:51–54

    Article  CAS  Google Scholar 

  • Al-Karaki GN (2006) Nursery inoculation of tomato with arbuscular mycorrhizal fungi and subsequent performance under irrigation with saline water. Sci Hort 109:1–7

    Article  Google Scholar 

  • Al-Karaki GN, Hammad R, Rusan M (2001) Response of two tomato cultivars differing in salt tolerance to inoculation with mycorrhizal fungi under salt stress. Mycorrhiza 11:43–47

    Article  CAS  Google Scholar 

  • Allen MF (1983) Formation of vesicular-arbuscular mycorrhizae in Atriplex gardneri (Chenopodiaceae): seasonal response in a cold desert. Mycologia 75:773–776

    Article  Google Scholar 

  • Allen MF, Allen EB (1990). Carbon source of VA mycorrhizal fungi associated with Chenopodiaceae from a semiarid shrub steppe. Ecology 71:2019–2021

    Article  Google Scholar 

  • AQUASTAT (1997) Tablas resumen para America Latina y el Caribe. FAO. http://www.fao.org/GEO-2-199

  • Augé RM (2001) Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11:3–42

    Article  Google Scholar 

  • Bandera R (2013) Rehabilitación de suelos salino-sódicos: evaluación de enmiendas y de especies forrajeras. Tesis presentada para optar al título de Magíster de la Universidad de Buenos Aires, Área Recursos Naturales, p 66

    Google Scholar 

  • Becerra A, Bartoloni J, Cofré N, Soteras F, Cabello M (2014) Arbuscular mycorrhizal fungi in saline soils: vertical distribution at different soil depths. Braz J Microbiol 45:585–594

    Article  PubMed  PubMed Central  Google Scholar 

  • Becerra A, Bartolini N, Cofré N, Soteras F, Cabello M (2016) Hongos micorrícico-arbusculares asociados a ambientes salinos de Córdoba. Bol Soc Arg Bot 51(1):5–13

    Article  Google Scholar 

  • Bothe H (2012) Arbuscular mycorrhiza and salt tolerance of plants. Symbiosis 58:1–3

    Article  CAS  Google Scholar 

  • Brevedan RE, Fernández OA, Villamil CB (1994) Halophytes as a resource for livestock husbandry in South America. In: Squires VR, Ayoub AT (eds) Halophytes as a Resource for Livestock and for Rehabilitation of Degraded Lands. Kluwer Acad Publ, Dordrecht, p 175–199

    Chapter  Google Scholar 

  • Brevedan RE, Fernández OA, Fioretti M, Baioni S, Busso CA, Laborde H (2016) Halophytes and Salt Tolerant Crops as a Forage Source for Livestock in South America. In: El Shaer HM, Squires VR (eds) Halophytic and Salt-Tolerant Feedstuffs Impacts on Nutrition, Physiology and Reproduction of Livestock. CRC Press. Taylor & Francis Group, Boca Ratón, p 60–78

    Google Scholar 

  • Cabido M, Zak M (1999). Vegetación del Norte de Córdoba, Secretaría de Agricultura, Ganadería y Recursos Renovables de Córdoba, Córdoba, Argentina

    Google Scholar 

  • Cantrell IC, Linderman RG (2001) Preinoculation of lettuce and onion with VA mycorrhizal fungi reduces deleterious effects of soil salinity. Plant Soil 233:269–281

    Article  CAS  Google Scholar 

  • Carvalho LM, Cacados I, Martiris-Loucao MA (2001) Temporal and spatial variation of arbuscular mycorrhizas in salt marsh plants of Tagus estuary (Portugal). Mycorrhiza 11:303–309

    Article  CAS  PubMed  Google Scholar 

  • Cavagnaro RA, Oyarzabal M, Oesterheld M, Grimoldi AA (2014) Dinámica de crecimiento de gramíneas C3 y C4 en respuesta a las micorrizas y a la disponibilidad de fósforo. Lilloa 51 (Supl): 164

    Google Scholar 

  • Cofré MN, Becerra AG, Domínguez LS (2007) Micorrizas en Atriplex argentina, una especie nativa forrajera de las Salinas Grandes de Córdoba. In: III Jornadas Nacionales de Flora Nativa y IV Encuentro de Cactáceas. Córdoba, Argentina. ISBN 978-987.510-079-4, p 209–217

    Google Scholar 

  • Cofré N, Becerra A, Nouhra E, Soteras F (2012) Arbuscular mycorrhizae and dark-septate endophytes on Atriplex cordobensis in saline sites from Argentina. J Agric Tech 87(7):2201–2214

    Google Scholar 

  • da Silva Sousa C, Rômulo Simões CM, Valadares de Sá Barreto Sampaio E, de Sousa Lima F, Fritz O, Costa Maia L (2013) Arbuscular mycorrhizal fungi within agroforestry and traditional land use systems in semi-arid Northeast Brazil. Acta Scientiarum 35(3):307–314

    Google Scholar 

  • Daleo P, Alberti J, Canepuccia A, Escapa M, Fanjul E, Silliman BR, Bertness MD, Iribarne O (2008) Mycorrhizal fungi determine salt-marsh plant zonation depending on nutrient supply. J Ecol 96:431–437

    Article  Google Scholar 

  • Di Bárbaro G, Espeche E, Manenti L, Rizo M, Andrada H, Viale S, Batallán Morales S (2018) Asociaciones micorrícicas entre hongos nativos y plantas forrajeras cultivadas en el valle central de Catamarca. 1° Jornadas de divulgación científica y técnica Facultad de Ciencias Agrarias Universidad Nacional de Catamarca, ISBN 978-987-661-299-9, p 19–20

    Google Scholar 

  • Di Bella CE, Rodríguez AM, Jacobo E, Golluscio RA, Taboada MA (2015) Impact of cattle grazing on temperate coastal salt marsh soils. Soil Use Manag 31:299–307

    Article  Google Scholar 

  • Druille M, Cabello MN, García Parisi PA, Golluscio RA, Omacini M (2015) Glyphosate vulnerability explains changes in root-symbionts propagules viability in pampean grasslands. Agric Ecos Env 202:48–55

    Article  CAS  Google Scholar 

  • Dudal R, Purnell MF (1986) Land Resources: salt affected soils. Reclamation and Revegetation Res 5:1–9

    Google Scholar 

  • El Shaer H (2010) Halophytes and salt-tolerant plants as potential forage for ruminants in the Near East region. Small Rum Res 91:3–12

    Article  Google Scholar 

  • Escudero VG, Mendoza RE (2005) Seasonal variation of arbuscular mycorrhizal fungi in temperate grasslands along a wide hydrologic gradient. Mycorrhiza 15:291–299

    Article  PubMed  Google Scholar 

  • Evelin H, Kapoor R, Giri B (2009) Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann Bot 104:1263–1280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evelin H, Giri B, Kapoor R (2013) Ultrastructural evidence for AMF mediated salt stress mitigation in Trigonella foenum-graecum. Mycorrhiza 23:71–86

    Article  CAS  PubMed  Google Scholar 

  • FAO (2015) Status of the World’s report resources. Main Report, p 364–398

    Google Scholar 

  • FAO-UNESCO (1974) Soil Map f the World. 1: 5 000 000. Volume I. Legend. United Nations Educational, Scientific and Cultural Organization, Paris, pp 59

    Google Scholar 

  • FAO-UNESCO (1971) Soil Map f the World. 1: 5 000 000. Volume IV South America. United Nations Educational, Scientific and Cultural Organization, Paris, pp 193

    Google Scholar 

  • Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963

    Article  CAS  PubMed  Google Scholar 

  • Fontenla S, Puntieri J, Ocampo JA (2001a) Mycorrhizal associations in the Patagonian steppe, Argentina. Plant Soil 233:13–29

    Article  CAS  Google Scholar 

  • Fontenla S, Chaia E, Bustos C, Pelliza A (2001b) Microorganismos simbióticos en Atriplex. XXVIII Jornadas Argentinas de Botánica, La Pampa, Argentina. Bol Soc Arg Bot 36:114

    Google Scholar 

  • Fracchia S, Aranda A, Gopar A, Silvani V, Fernandez L, Godeas A (2009) Mycorrhizal status of plant species in the Chaco Serrano Woodland from central Argentina. Mycorrhiza 19:205–214

    Article  PubMed  Google Scholar 

  • García I, Mendoza RE (2007) Arbuscular mycorrhizal fungi and plant symbiosis in a saline-sodic soil. Mycorrhiza 17:167–174

    Article  PubMed  Google Scholar 

  • García I, Mendoza RE (2008) Relationships among soil properties, plant nutrition and arbuscular mycorrhizal fungi-plant symbioses in a temperate grassland along hydrologic, saline and sodic gradients. FEMS Microbiol Ecol 63:359–71

    Article  PubMed  CAS  Google Scholar 

  • García I, Cabello M, Fernández-López C, Chippano T, Mendoza R (2017) Hongos micorrícicos arbusculares en asociación con Lotus tenuis en ambientes halomórficos de la Cuenca del río Salado. CONEBIOS V Ecología y Biología de Suelos. ISBN 978-987-3941-39-9. Buenos Aires. Argentina

    Google Scholar 

  • Gerdemann JW (1968) Vesicular arbuscular mycorrhiza and plant growth. Ann Rev Phytopatol 6:397–418

    Article  Google Scholar 

  • Giri B, Kapoor R, Mukerji KG (2003) Influence of arbuscular mycorrhizal fungi and salinity on growth, biomass, and mineral nutrition of Acacia auriculiformis. Biol Fertil Soils 38:170–175

    Article  Google Scholar 

  • Grigera G, Oesterheld M (2004) Mycorrhizal colonization patterns under contrasting grazing and topographic conditions in flooding Pampa (Argentina). Rang Ecol Manag 57:601–605

    Google Scholar 

  • Hack CM, Porta M, Tomei CE, Grimoldi AA (2009) Inoculación con hongos micorrícicos arbusculares y fertilización fosfatada en Melilotus alba. Comunicaciones Científicas y Tecnológicas. Universidad Nacional del Nordeste. CA-009

    Google Scholar 

  • Harley JL, Harley EL (1987) A check-list of mycorrhiza in the British flora. New Phytol 105:1–102

    Article  Google Scholar 

  • Hasanuzzaman M, Nahar K, Alam MM, Bhowmik PC, Hossain MA, Rahman MM, Prasad MNV, Ozturk M, Fujita M (2014) Potential use of halophytes to remediate saline soils. BioMed Res Internat, Article ID 589341, 12 pages

    Google Scholar 

  • Hensen I (1994) Estudios ecológicos y fenológicos sobre Polylepis besseri Hieron en la Cordillera Oriental Boliviana. Ecología Bolivia 23:21–32

    Google Scholar 

  • Hildebrandt U, Janetta K, Fouad O, Renne B, Nawrath K, Bothe H (2001) Arbuscular mycorrhizal colonization of halophytes in Central European salt marshes. Mycorrhiza 10:175–183

    Article  CAS  Google Scholar 

  • Hirrel MC (1981) The effect of sodium and chloride salts on the germination of Gigaspora margarita. Mycology 43:610–617

    Article  Google Scholar 

  • Hirrel MC, Mehravaran H, Gerdemann JW (1978) Vesicular arbuscular mycorrhizae in the Chenopodiaceae and Cruciferae: do they occur? Can J Bot 56:2813–2817

    Article  Google Scholar 

  • INTA (1977) La Pampa Deprimida. Condiciones de drenaje de sus suelos. INTA. Departamento de Suelos. Publicación No. 154, Serie suelos, p 162, Buenos Aires

    Google Scholar 

  • INTA-CIRN (1990) Atlas de suelos de la República Argentina. Escala 1:500.000, 1: 1.000.000. Secretaría de Agricultura, Ganadería y Pesca. Proyecto PNUD ARG 85/109, Buenos Aires

    Google Scholar 

  • INTA (2003) Recursos Naturales de La Provincia de Córdoba: Los Suelos. Nivel de Reconocimiento 1:500.000. Secretaria de Ambiente de Córdoba, Argentina, Córdoba

    Google Scholar 

  • Jahromi F, Aroca R, Porcel R, Ruiz-Lozano JM (2008) Influence of salinity on the in vitro development of Glomus intraradices and on the in vivo physiological and molecular responses of mycorrhizal lettuce plants. Microbial Ecol 55:45–53

    Article  Google Scholar 

  • Juniper S, Abbott L (1993) Vesicular–arbuscular mycorrhizas and soil salinity. Mycorrhiza4:45–57

    Article  Google Scholar 

  • Juniper S, Abbott L (2006) Soil salinity delays germination and limits growth of hyphae from propagules of arbuscular mycorrhizal fungi. Mycorrhiza16:371–379

    Article  CAS  PubMed  Google Scholar 

  • Kalaji HM, Jajoo A, Oukarroum A, Brestic, M, Zivcak, M, Samborska A, Cetner MD, Łukasik I, Goltsev V, Ladle RJ (2016) Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiol Plant 38:102

    Article  CAS  Google Scholar 

  • Kim C-K, Weber DJ (1985) Distribution of VA mycorrhiza on halophytes on inland salt playas. Plant Soil 83:207–214

    Article  CAS  Google Scholar 

  • Landwehr M, Hildebrandt U, Wilde P, Nawrath K, Toth T, Biro B, Bothe H (2002) The arbuscular mycorrhizal fungus Glomus geosporum in European saline, sodic and gypsum soils. Mycorrhiza 12:199–211

    Article  CAS  PubMed  Google Scholar 

  • Lavado RS, Taboada MA (1988) Water, salt and sodium dynamics in a natraquoll in Argentina. Catena 15:577–594

    Article  CAS  Google Scholar 

  • Le Houérou HN (1993) Salt-tolerant plants for the arid regions of the Mediterranean isoclimatic zone. In: Lieth H, Al Masoon AA (eds) Towards the rational use of high salinity tolerant plants, Vol. 1. Kluwer Academic Publisher, Dordrecht, The Netherlands, p 403–422

    Chapter  Google Scholar 

  • Lugo MA, Anton AM, Cabello MN (2005). Arbuscular mycorrhizas in the Larrea divaricata scrubland of the arid “Chaco”, Central Argentina. Journal Agric Tech 1:163–178

    Google Scholar 

  • Lugo MA, Reinhart KO, Menoyo E, Crespo EM, Urcelay C (2015) Plant functional traits and phylogenetic relatedness explain variation in associations with root fungal endophytes in an extreme arid environment. Mycorrhiza 25:85–95

    Article  PubMed  Google Scholar 

  • Mazzanti A, Montes L, Minon D, Sarlangue H, Chepi C (1988) Utilización de Lotus tenuis en la Pampa Deprimida: resultado de una encuesta. Rev Agric Prod Anim 8:301–305

    Google Scholar 

  • McMillen BG, Juniper S, Abbott LK (1998) Inhibition of hyphal growth of a vesicular–arbuscular mycorrhizal fungus in soil containing sodium chloride limits the spread of infection from spores. Soil Biol Biochem 30:1639–1646

    Article  CAS  Google Scholar 

  • Mendoza R, Pagani E (1997) Influence of phosphorus nutrition on mycorrhizal growth response and morphology of mycorrhizae in Lotus tenuis. J Plant Nutr 20:625–639

    Article  CAS  Google Scholar 

  • Mendoza R, Pagani E, Pomar MC (2000) Variabilidad poblacional de Lotus glaber en relación con la absorción de fósforo en suelo. Ecol Austral 10:3–14

    Google Scholar 

  • Mijaluk A, Brandán de Weht C, García Paulucci D (2011) Micorrizas arbusculares en arbóreas nativas y en gramíneas en un sistema silvopastoril del chaco húmedo, Argentina. II Jornada sobre Ciencias del Suelo del NOA para estudiantes y jóvenes profesionales. Universidad Nacional de Tucumán, p 24

    Google Scholar 

  • Miransari M (2010) Contribution of arbuscular mycorrhizal symbiosis to plant growth under different types of soil stress. Plant Biol 12:563–569

    CAS  PubMed  Google Scholar 

  • Mohankumar V, Mahadevan A (1987) Vesicular-arbuscular mycorrhizal association in plants of Kalakad reserve forest, India. Angew Bot 61:255–274

    Google Scholar 

  • Morras H, Candioti L (1982) Relación entre permeabilidad, ciertos caracteres analíticos y situación topográfica de algunos suelos de los bajos submeridionales (Santa Fé). Rev Invest Agro 26:23–32

    Google Scholar 

  • Munns R (1993) Physiological processes limiting plant growth in saline soils: some dogmas and hypotheses. Plant Cell Environ 16:15–24

    Article  CAS  Google Scholar 

  • Nieva AS, Bailleres MA, Llames ME, Taboada MA, Ruiz OA, Menendez A (2018) Promotion of Lotus tenuis in the Flooding Pampa (Argentina) increases the soil fungal diversity. Fungal Ecol 33:80–91

    Article  Google Scholar 

  • O’Leary JO (1988) Saline environments and halophytic crops. In: Arid land, today and tomorrow. West view Press, Boulder, Colorado, p 773–790

    Google Scholar 

  • Pagano MC, Lugo MA, Araújo FS, Ferrero MA, Menoyo E, Steinaker D (2011) Native species for restoration and conservation of biodiversity in South America. In: Marín L, Kovač D (eds) Native Species: Identification, Conservation and Restoration. Nova Science Publishers, New York, p 1–55

    Google Scholar 

  • Paoli HP, Volante JN, Noe YE, Vale LM, Castrillo S, Osinaga R, Chafatinos T, Nadir A (2009) Adecuación a un sistema de información geográfica del estudio “Los Suelos del NOA (Salta y Jujuy), Nadir A, Chafatinos T, 1990”. Convenio INTA-UNSa. Salta: Ediciones INTA. ISBN 978-987-25050-8-0

    Google Scholar 

  • Passera CB, Borsetto O (1989) Aspectos ecológicos de Atriplex lampa. Invest Agrar Prod Prot Veg 4:179–198

    Google Scholar 

  • Peterson RL, Ashford AE, Allaway WG (1985) Vesicular-arbuscular mycorrhizal association of vascular plants on Heron Island, a great barrier reef coral ray. Aust J Bot 33:669–676

    Article  Google Scholar 

  • Pfeiffer CM, Bloss HE (1988) Growth and nutrition of guayule (Parthenium argentatum) in a saline soil as influenced by vesicular–arbuscular mycorrhiza and phosphorus fertilization. New Phytol 108:315–321

    Article  Google Scholar 

  • Plenchette C, Duponnois R (2005) Growth response of the saltbush Atriplex nummularia L. to inoculation with the arbuscular mycorrhizal fungus Glomus intraradices. J Arid Environ 61:535–540

    Article  Google Scholar 

  • Porcel P, Aroca R, Ruiz-Lozano JM (2012) Salinity stress alleviation using arbuscular mycorrhizal fungi. A review. Agron Sustain Dev 32:181–200

    Article  CAS  Google Scholar 

  • Rozema J, Arp W, van Diggelen J, van Esbroek M, Broekmann R, Punte H (1986) Occurrence and ecological significance of vesicular arbuscular mycorrhiza in the salt marsh environment. Acta Bot Neerlandica 35:457–467

    Article  Google Scholar 

  • Ruan C-J, Teixeira da Silva JA, Mopper S, Qin P, Lutts S (2010) Halophyte improvement for a salinized world. Crit Rev Plant Sci 29:329–359

    Article  CAS  Google Scholar 

  • Ruiz-Lozano JM (2003) Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress. New perspectives for molecular studies. Mycorrhiza 13:309–317

    PubMed  Google Scholar 

  • Ruiz-Lozano JM, Azcón R (2000) Symbiotic efficiency and infectivity of an autochthonous arbuscular mycorrhizal Glomus sp. from saline soils and G. deserticola under salinity. Mycorrhiza 10:137–143

    Article  CAS  Google Scholar 

  • Ruiz-Lozano JM, Porcel R, Azcón R, Aroca R (2012) Regulation by arbuscular mycorrhizae of the integrated physiological response to salinity in plants: new challenges in physiological and molecular studies. J Exp Bot 63:4033–4044

    Article  CAS  PubMed  Google Scholar 

  • Sala OE (1988) The effect of herbivory on vegetation structure. In: Werger MJA, van der Aart PJM, During HJ, Verboeven JTA (eds) Plant form and vegetation structure. SPB Academic Publishing, The Hague, The Netherlands, p 317–330

    Google Scholar 

  • Schalamuk S, Druille M, Cabello M (2015) Arbuscular mycorrhizal fungi: Influence of agronomic practices on diversity and dynamics of colonization. In: García de Salomone I, Vázquez S, Penna C, Cassán F (eds) Rizosfera, biodiversidad y agricultura sustentable. Asoc Argent Microbiol, p 47–71

    Google Scholar 

  • Schwab M, Di Bella CE, Casas C, Clavijo MP, Druille M, Lattanzi FA, Schaufele R, Grimoldi AA (2016) Evaluación de la incorporación de Panicum coloratum como fitorremediadora de suelos sódicos de la Pampa Deprimida. 39° Congreso de la Asociación Argentina de Producción Animal, PP2

    Google Scholar 

  • Sengupta A, Chaudhuri S (1990) Vesicular arbuscular mycorrhiza (VAM) in pioneer salt marsh plants of the Ganges River delta in West Bengal (India). Plant Soil 122:111–113

    Article  Google Scholar 

  • Shabala S (2013) Learning from halophytes: physiological basis and strategies to improve abiotic stress tolerance in crops. Ann Bot 112:1209–1221

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharifi M, Ghorbanli M, Ebrahimzadeh H (2007) Improved growth of salinity-stressed soybean after inoculation with pre-treated mycorrhizal fungi. J Plant Physiol 164:1144–1151

    Article  CAS  PubMed  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis. Academic Press, San Diego

    Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic Press, London

    Google Scholar 

  • Soteras F, Becerra A, Cofré N, Nouhra E (2009). Variación estacional de la colonización micorrícica de Atriplex lampa (Moq.) D. Dietr. en dos salinas de Córdoba. XXXII Jornadas Argentinas de Botánica. Bol Soc Argent Bot Córdoba, Argentina, p 130

    Google Scholar 

  • Soteras F, Becerra A, Cofré N, Bartoloni, Cabello M (2012) Arbuscular mycorrhizal fungal species in saline environments of Central Argentina: seasonal variation and distribution of spores at different soil depth. Sydowia 64:301–311

    Google Scholar 

  • Soteras F, Cofré N, Bartoloni J, Cabello M, Becerra A (2013) Colonización radical de Atriplex lampa en dos ambientes salinos de Córdoba, Argentina. Bol Soc Arg Bot 48:211–219

    Google Scholar 

  • Stuart JR, Tester M, Gaxiola RA, Flowers TJ (2012) Plants of saline environments in AccessScience, ©McGraw-Hill Companies, Pennsylvania

    Google Scholar 

  • Szabolcs I (1979) Review of Research on salt-affected soils. United Nations of Educational, Scientific and Cultural Organizations. Paris, ISBN 92-3-101613-X

    Google Scholar 

  • Taboada MA, Rubio G, Chaneton EJ (2011) Grazing impacts on soil physical, chemical and ecological properties in forage production systems. In: Hatfield JL, Sauer TJ (eds) Soil management: building a stable base for agriculture. American Society of Agronomy & Soil Science Society of America, p 301–320

    Google Scholar 

  • Tang ZS, An H, Shangguan ZP (2015) The impact of desertification on carbon and nitrogen storage in the desert steppe ecosystem. Ecol Eng 84:92–99

    Article  Google Scholar 

  • Ter Braak CJF (1987–1992) CANOCO—a FORTRAN program for canonical community ordination. Microcomputer Power, Ithaca, NY

    Google Scholar 

  • Tian CY, Feng G, Li XL, Zhang FS (2004) Different effects of arbuscular mycorrhizal fungal isolates from saline or non-saline soil on salinity tolerance of plants. App Soil Ecol 26:143–148

    Article  Google Scholar 

  • Vignolio O, Fernández O, Maceira N (1996) Respuestas de Lotus tenuis y Lotus corniculatus (Leguminosae) al anegamiento en plantas de distintas edades. Rev Fac Agron La Plata 101:57–66

    Google Scholar 

  • Vignolio O, Fernández O, Maceira N (1999) Flooding tolerance in five populations of Lotus glaber Mill. (Syn. Lotus tenuis Waldst. Et. Kit.). Aust J Agric Res 50:555–559

    Article  Google Scholar 

  • Wang B, Qiu YL (2006) Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16:299–363

    Article  CAS  PubMed  Google Scholar 

  • Wang FY, Liu RJ, Lin XG, Zhou JM (2004) Arbuscular mycorrhizal status of wild plants in saline-alkaline soils of the Yellow River Delta. Mycorrhiza 14:133–137

    Article  PubMed  Google Scholar 

  • Yeo AR, Flowers TJ (1980) Salt tolerance in the halophyte Suaeda maritima (L.) Dum.: evaluation of the effect of salinity upon growth. J Experiment Bot 31:1171–1183

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Secretaría de Ciencia y Técnica - Universidad Nacional de Córdoba, Agencia de Promoción Científica y Tecnológica (PICT 438-2006) and CONICET (PIP0950). All authors are researchers from CONICET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandra G. Becerra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Becerra, A.G., Cofré, M.N., García, I. (2019). Arbuscular Mycorrhizal Symbiosis in Salt-Tolerance Species and Halophytes Growing in Salt-Affected Soils of South America. In: Pagano, M., Lugo, M. (eds) Mycorrhizal Fungi in South America. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-15228-4_15

Download citation

Publish with us

Policies and ethics