Skip to main content

A Switch for Transcriptional Activation and Repression: Histone Arginine Methylation

  • Chapter
  • First Online:
The DNA, RNA, and Histone Methylomes

Part of the book series: RNA Technologies ((RNATECHN))

  • 1259 Accesses

Abstract

Histones can be methylated on both lysine (K) and arginine (R) residues. Histone arginine methylation is a prevalent post-translational modification catalyzed by protein arginine methyltransferases (PRMTs). As an epigenetic modification, histone arginine methylation is associated with signal transduction, cell differentiation, cellular metabolism, tissue homeostasis, immune and inflammatory responses etc. Methylation at arginine residues alters the properties of the nucleosome to regulate gene transcription and the interaction between nucleosome and other regulatory proteins. Histone arginine methylation results in either transcriptional repression or activation. This review focuses on the biochemistry, regulatory mechanism, and the functional significance of histone arginine methylation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abeywardana T, Oh M, Jiang L et al (2018) CARM1 suppresses de novo serine synthesis by promoting PKM2 activity. J Biol Chem 293:15290–15303

    Article  CAS  PubMed  Google Scholar 

  • Akahoshi A, Suzue Y, Kitamatsu M et al (2011) Site-specific incorporation of arginine analogs into proteins using arginyl-tRNA synthetase. Biochem Biophys Res Commun 414:625–630

    Article  CAS  PubMed  Google Scholar 

  • An W, Kim J, Roeder RG (2004) Ordered cooperative functions of PRMT1, p300, and CARM1 in transcriptional activation by p53. Cell 117:735–748

    Article  CAS  PubMed  Google Scholar 

  • Bandyopadhyay S, Harris DP, Adams GN et al (2012) HOXA9 methylation by PRMT5 is essential for endothelial cell expression of leukocyte adhesion molecules. Mol Cell Biol 32:1202–1213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bedford MT, Clarke SG (2009) Protein arginine methylation in mammals: who, what, and why. Mol Cell 33:1–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blanc RS, Vogel G, Chen T et al (2016) PRMT7 preserves satellite cell regenerative capacity. Cell Rep 14:1528–1539

    Article  CAS  PubMed  Google Scholar 

  • Blanc RS, Vogel G, Li X et al (2017) Arginine methylation by PRMT1 regulates muscle stem cell fate. Mol Cell Biol 37:e00457-16

    Article  PubMed  PubMed Central  Google Scholar 

  • Bode-Boger SM, Scalera F, Kielstein JT et al (2006) Symmetrical dimethylarginine: a new combined parameter for renal function and extent of coronary artery disease. J Am Soc Nephrol 17:1128–1134

    Article  PubMed  CAS  Google Scholar 

  • Bouras G, Deftereos S, Tousoulis D et al (2013) Asymmetric dimethylarginine (ADMA): a promising biomarker for cardiovascular disease? Curr Top Med Chem 13:180–200

    Article  CAS  PubMed  Google Scholar 

  • Casadio F, Lu X, Pollock SB et al (2013) H3R42me2a is a histone modification with positive transcriptional effects. Proc Natl Acad Sci USA 110:14894–14899

    Article  CAS  PubMed  Google Scholar 

  • Cesaro E, De Cegli R, Medugno L et al (2009) The Kruppel-like zinc finger protein ZNF224 recruits the arginine methyltransferase PRMT5 on the transcriptional repressor complex of the aldolase A gene. J Biol Chem 284:32321–32330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheung N, Chan LC, Thompson A et al (2007) Protein arginine-methyltransferase-dependent oncogenesis. Nat Cell Biol 9:1208–1215

    Article  CAS  PubMed  Google Scholar 

  • Chin JW (2017) Expanding and reprogramming the genetic code. Nature 550:53–60

    Article  CAS  PubMed  Google Scholar 

  • Covic M, Hassa PO, Saccani S et al (2005) Arginine methyltransferase CARM1 is a promoter-specific regulator of NF-kappaB-dependent gene expression. EMBO J 24:85–96

    Article  CAS  PubMed  Google Scholar 

  • Dacwag CS, Bedford MT, Sif S et al (2009) Distinct protein arginine methyltransferases promote ATP-dependent chromatin remodeling function at different stages of skeletal muscle differentiation. Mol Cell Biol 29:1909–1921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Damez-Werno DM, Sun H, Scobie KN et al (2016) Histone arginine methylation in cocaine action in the nucleus accumbens. Proc Natl Acad Sci USA 113:9623–9628

    Article  CAS  PubMed  Google Scholar 

  • Dhar SS, Lee SH, Kan PY et al (2012) Trans-tail regulation of MLL4-catalyzed H3K4 methylation by H4R3 symmetric dimethylation is mediated by a tandem PHD of MLL4. Genes Dev 26:2749–2762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Lorenzo A, Yang Y, Macaluso M et al (2014) A gain-of-function mouse model identifies PRMT6 as a NF-kappaB coactivator. Nucleic Acids Res 42:8297–8309

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dong F, Li Q, Yang C et al (2018) PRMT2 links histone H3R8 asymmetric dimethylation to oncogenic activation and tumorigenesis of glioblastoma. Nat Commun 9:4552

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Elakoum R, Gauchotte G, Oussalah A et al (2014) CARM1 and PRMT1 are dysregulated in lung cancer without hierarchical features. Biochimie 97:210–218

    Article  CAS  PubMed  Google Scholar 

  • Esse R, Florindo C, Imbard A et al (2013) Global protein and histone arginine methylation are affected in a tissue-specific manner in a rat model of diet-induced hyperhomocysteinemia. Biochim Biophys Acta 1832:1708–1714

    Article  CAS  PubMed  Google Scholar 

  • Feng Y, Maity R, Whitelegge JP et al (2013) Mammalian protein arginine methyltransferase 7 (PRMT7) specifically targets RXR sites in lysine- and arginine-rich regions. J Biol Chem 288:37010–37025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferreira de Freitas R, Eram MS, Szewczyk MM et al (2016) Discovery of a potent class I protein arginine methyltransferase fragment inhibitor. J Med Chem 59:1176–1183

    Article  CAS  PubMed  Google Scholar 

  • Ganesh L, Yoshimoto T, Moorthy NC et al (2006) Protein methyltransferase 2 inhibits NF-kappaB function and promotes apoptosis. Mol Cell Biol 26:3864–3874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia MM, Gueant-Rodriguez RM, Pooya S et al (2011) Methyl donor deficiency induces cardiomyopathy through altered methylation/acetylation of PGC-1alpha by PRMT1 and SIRT1. J Pathol 225:324–335

    Article  CAS  PubMed  Google Scholar 

  • Greenblatt SM, Man N, Hamard PJ et al (2018) CARM1 is essential for myeloid leukemogenesis but dispensable for normal hematopoiesis. Cancer Cell 33:1111–1127.e5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guccione E, Bassi C, Casadio F et al (2007) Methylation of histone H3R2 by PRMT6 and H3K4 by an MLL complex are mutually exclusive. Nature 449:933–937

    Article  CAS  PubMed  Google Scholar 

  • Han HS, Jung CY, Yoon YS et al (2014) Arginine methylation of CRTC2 is critical in the transcriptional control of hepatic glucose metabolism. Sci Signal 7:ra19

    Article  PubMed  CAS  Google Scholar 

  • Harrison MJ, Tang YH, Dowhan DH (2010) Protein arginine methyltransferase 6 regulates multiple aspects of gene expression. Nucleic Acids Res 38:2201–2216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hashimoto M, Murata K, Ishida J et al (2016) Severe hypomyelination and developmental defects are caused in mice lacking protein arginine methyltransferase 1 (PRMT1) in the central nervous system. J Biol Chem 291:2237–2245

    Article  CAS  PubMed  Google Scholar 

  • Hassa PO, Covic M, Bedford MT et al (2008) Protein arginine methyltransferase 1 coactivates NF-kappaB-dependent gene expression synergistically with CARM1 and PARP1. J Mol Biol 377:668–678

    Article  CAS  PubMed  Google Scholar 

  • Hatanaka Y, Tsusaka T, Shimizu N et al (2017) Histone H3 methylated at arginine 17 is essential for reprogramming the paternal genome in zygotes. Cell Rep 20:2756–2765

    Article  CAS  PubMed  Google Scholar 

  • Hou W, Nemitz S, Schopper S et al (2018) Arginine methylation by PRMT2 controls the functions of the actin nucleator cobl. Dev Cell 45:262–275 e268

    Article  CAS  PubMed  Google Scholar 

  • Hu H, Qian K, Ho MC et al (2016) Small molecule inhibitors of protein arginine methyltransferases. Expert Opin Investig Drugs 25:335–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang S, Litt M, Felsenfeld G (2005) Methylation of histone H4 by arginine methyltransferase PRMT1 is essential in vivo for many subsequent histone modifications. Genes Dev 19:1885–1893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang J, Vogel G, Yu Z et al (2011) Type II arginine methyltransferase PRMT5 regulates gene expression of inhibitors of differentiation/DNA binding Id2 and Id4 during glial cell differentiation. J Biol Chem 286:44424–44432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iderzorig T, Kellen J, Osude C et al (2018) Comparison of EMT mediated tyrosine kinase inhibitor resistance in NSCLC. Biochem Biophys Res Commun 496:770–777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ikenaka K, Miyata S, Mori Y et al (2006) Immunohistochemical and western analyses of protein arginine N-methyltransferase 3 in the mouse brain. Neuroscience 141:1971–1982

    Article  CAS  PubMed  Google Scholar 

  • Infantino S, Light A, O'Donnell K et al (2017) Arginine methylation catalyzed by PRMT1 is required for B cell activation and differentiation. Nat Commun 8:891

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Inoue M, Okamoto K, Terashima A et al (2018) Arginine methylation controls the strength of gammac-family cytokine signaling in T cell maintenance. Nat Immunol 19:1265–1276

    Article  CAS  PubMed  Google Scholar 

  • Iwasaki H, Kovacic JC, Olive M et al (2010) Disruption of protein arginine N-methyltransferase 2 regulates leptin signaling and produces leanness in vivo through loss of STAT3 methylation. Circ Res 107:992–1001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • James LI, Beaver JE, Rice NW et al (2013) A synthetic receptor for asymmetric dimethyl arginine. J Am Chem Soc 135:6450–6455

    Article  CAS  PubMed  Google Scholar 

  • Jin Y, Zhou J, Xu F et al (2016) Targeting methyltransferase PRMT5 eliminates leukemia stem cells in chronic myelogenous leukemia. J Clin Invest 126:3961–3980

    Article  PubMed  PubMed Central  Google Scholar 

  • Karkhanis V, Wang L, Tae S et al (2012) Protein arginine methyltransferase 7 regulates cellular response to DNA damage by methylating promoter histones H2A and H4 of the polymerase delta catalytic subunit gene, POLD1. J Biol Chem 287:29801–29814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawabe Y, Wang YX, McKinnell IW et al (2012) Carm1 regulates Pax7 transcriptional activity through MLL1/2 recruitment during asymmetric satellite stem cell divisions. Cell Stem Cell 11:333–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JD, Park KE, Ishida J et al (2015) PRMT8 as a phospholipase regulates Purkinje cell dendritic arborization and motor coordination. Sci Adv 1:e1500615

    Article  PubMed  PubMed Central  Google Scholar 

  • Krapivinsky G, Krapivinsky L, Renthal NE et al (2017) Histone phosphorylation by TRPM6’s cleaved kinase attenuates adjacent arginine methylation to regulate gene expression. Proc Natl Acad Sci USA 114:E7092–E7100

    Article  CAS  PubMed  Google Scholar 

  • LeBlanc SE, Konda S, Wu Q et al (2012) Protein arginine methyltransferase 5 (Prmt5) promotes gene expression of peroxisome proliferator-activated receptor gamma2 (PPARgamma2) and its target genes during adipogenesis. Mol Endocrinol 26:583–597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee WC, Lin WL, Matsui T et al (2015) Protein arginine methyltransferase 8: tetrameric structure and protein substrate specificity. Biochemistry 54:7514–7523

    Article  CAS  PubMed  Google Scholar 

  • Li J, Zhao Z, Carter C et al (2013) Coactivator-associated arginine methyltransferase 1 regulates fetal hematopoiesis and thymocyte development. J Immunol 190:597–604

    Article  CAS  PubMed  Google Scholar 

  • Li S, Ali S, Duan X et al (2018) JMJD1B demethylates H4R3me2s and H3K9me2 to facilitate gene expression for development of hematopoietic stem and progenitor cells. Cell Rep 23:389–403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu F, Cheng G, Hamard PJ et al (2015) Arginine methyltransferase PRMT5 is essential for sustaining normal adult hematopoiesis. J Clin Invest 125:3532–3544

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu F, Ma F, Wang Y et al (2017) PKM2 methylation by CARM1 activates aerobic glycolysis to promote tumorigenesis. Nat Cell Biol 19:1358–1370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madreiter-Sokolowski CT, Klec C, Parichatikanond W et al (2016) PRMT1-mediated methylation of MICU1 determines the UCP2/3 dependency of mitochondrial Ca(2+) uptake in immortalized cells. Nat Commun 7:12897

    Article  PubMed  PubMed Central  Google Scholar 

  • Mitchell LH, Drew AE, Ribich SA et al (2015) Aryl pyrazoles as potent inhibitors of arginine methyltransferases: identification of the first PRMT6 tool compound. ACS Med Chem Lett 6:655–659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mizutani S, Yoshida T, Zhao X et al (2015) Loss of RUNX1/AML1 arginine-methylation impairs peripheral T cell homeostasis. Br J Haematol 170:859–873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neault M, Mallette FA, Vogel G et al (2012) Ablation of PRMT6 reveals a role as a negative transcriptional regulator of the p53 tumor suppressor. Nucleic Acids Res 40:9513–9521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pal S, Vishwanath SN, Erdjument-Bromage H et al (2004) Human SWI/SNF-associated PRMT5 methylates histone H3 arginine 8 and negatively regulates expression of ST7 and NM23 tumor suppressor genes. Mol Cell Biol 24:9630–9645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quan X, Yue W, Luo Y et al (2015) The protein arginine methyltransferase PRMT5 regulates Abeta-induced toxicity in human cells and Caenorhabditis elegans models of Alzheimer’s disease. J Neurochem 134:969–977

    Article  CAS  PubMed  Google Scholar 

  • Ramon-Maiques S, Kuo AJ, Carney D et al (2007) The plant homeodomain finger of RAG2 recognizes histone H3 methylated at both lysine-4 and arginine-2. Proc Natl Acad Sci USA 104:18993–18998

    Article  CAS  PubMed  Google Scholar 

  • Ratovitski T, Arbez N, Stewart JC et al (2015) PRMT5-mediated symmetric arginine dimethylation is attenuated by mutant huntingtin and is impaired in Huntington’s disease (HD). Cell Cycle 14:1716–1729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rhein VF, Carroll J, Ding S et al (2013) NDUFAF7 methylates arginine 85 in the NDUFS2 subunit of human complex I. J Biol Chem 288:33016–33026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanchez SE, Petrillo E, Beckwith EJ et al (2010) A methyl transferase links the circadian clock to the regulation of alternative splicing. Nature 468:112–116

    Article  CAS  PubMed  Google Scholar 

  • Selvi BR, Batta K, Kishore AH et al (2010) Identification of a novel inhibitor of coactivator-associated arginine methyltransferase 1 (CARM1)-mediated methylation of histone H3 Arg-17. J Biol Chem 285:7143–7152

    Article  CAS  PubMed  Google Scholar 

  • Sha L, Daitoku H, Araoi S et al (2017) Asymmetric arginine dimethylation modulates mitochondrial energy metabolism and homeostasis in Caenorhabditis elegans. Mol Cell Biol 37:e00504-16

    Article  PubMed  PubMed Central  Google Scholar 

  • Shin HJ, Kim H, Oh S et al (2016) AMPK-SKP2-CARM1 signalling cascade in transcriptional regulation of autophagy. Nature 534:553–557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simandi Z, Czipa E, Horvath A et al (2015) PRMT1 and PRMT8 regulate retinoic acid-dependent neuronal differentiation with implications to neuropathology. Stem Cells 33:726–741

    Article  CAS  PubMed  Google Scholar 

  • Suchankova J, Legartova S, Sehnalova P et al (2014) PRMT1 arginine methyltransferase accumulates in cytoplasmic bodies that respond to selective inhibition and DNA damage. Eur J Histochem 58:2389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Q, Liu L, Roth M et al (2015) PRMT1 upregulated by epithelial proinflammatory cytokines participates in COX2 expression in fibroblasts and chronic antigen-induced pulmonary inflammation. J Immunol 195:298–306

    Article  CAS  PubMed  Google Scholar 

  • Swiercz R, Person MD, Bedford MT (2005) Ribosomal protein S2 is a substrate for mammalian PRMT3 (protein arginine methyltransferase 3). Biochem J 386:85–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swiercz R, Cheng D, Kim D et al (2007) Ribosomal protein rpS2 is hypomethylated in PRMT3-deficient mice. J Biol Chem 282:16917–16923

    Article  CAS  PubMed  Google Scholar 

  • Tanaka H, Hoshikawa Y, Oh-hara T et al (2009) PRMT5, a novel TRAIL receptor-binding protein, inhibits TRAIL-induced apoptosis via nuclear factor-kappaB activation. Mol Cancer Res 7:557–569

    Article  CAS  PubMed  Google Scholar 

  • Tikhanovich I, Zhao J, Olson J et al (2017) Protein arginine methyltransferase 1 modulates innate immune responses through regulation of peroxisome proliferator-activated receptor gamma-dependent macrophage differentiation. J Biol Chem 292:6882–6894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsai WW, Niessen S, Goebel N et al (2013) PRMT5 modulates the metabolic response to fasting signals. Proc Natl Acad Sci USA 110:8870–8875

    Article  CAS  PubMed  Google Scholar 

  • Tsukada Y, Zhang Y (2006) Purification of histone demethylases from HeLa cells. Methods 40:318–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verma M, Charles RCM, Chakrapani B et al (2017) PRMT7 interacts with ASS1 and Citrullinemia mutations disrupt the interaction. J Mol Biol 429:2278–2289

    Article  CAS  PubMed  Google Scholar 

  • Waldmann T, Izzo A, Kamieniarz K et al (2011) Methylation of H2AR29 is a novel repressive PRMT6 target. Epigenetics Chromatin 4:11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang YP, Lei QY (2017) Perspectives of reprogramming breast cancer metabolism. Adv Exp Med Biol 1026:217–232

    Article  CAS  PubMed  Google Scholar 

  • Wang YP, Lei QY (2018) Metabolic recoding of epigenetics in cancer. Cancer Commun (Lond) 38:25

    Article  Google Scholar 

  • Wang SC, Dowhan DH, Eriksson NA et al (2012) CARM1/PRMT4 is necessary for the glycogen gene expression programme in skeletal muscle cells. Biochem J 444:323–331

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Zhao Z, Meyer MB et al (2014) CARM1 methylates chromatin remodeling factor BAF155 to enhance tumor progression and metastasis. Cancer Cell 25:21–36

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang Y, Xiao M, Chen X et al (2015) WT1 recruits TET2 to regulate its target gene expression and suppress leukemia cell proliferation. Mol Cell 57:662–673

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang YP, Zhou W, Wang J et al (2016) Arginine methylation of MDH1 by CARM1 inhibits glutamine metabolism and suppresses pancreatic cancer. Mol Cell 64:673–687

    Article  CAS  PubMed  Google Scholar 

  • Yadav N, Cheng D, Richard S et al (2008) CARM1 promotes adipocyte differentiation by coactivating PPARgamma. EMBO Rep 9:193–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamoto T, Takano N, Ishiwata K et al (2014) Reduced methylation of PFKFB3 in cancer cells shunts glucose towards the pentose phosphate pathway. Nat Commun 5:3480

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang Y, Lu Y, Espejo A et al (2010) TDRD3 is an effector molecule for arginine-methylated histone marks. Mol Cell 40:1016–1023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ying Z, Mei M, Zhang P et al (2015) Histone arginine methylation by PRMT7 controls germinal center formation via regulating Bcl6 transcription. J Immunol 195:1538–1547

    Article  CAS  PubMed  Google Scholar 

  • Young BD, Weiss DI, Zurita-Lopez CI et al (2012) Identification of methylated proteins in the yeast small ribosomal subunit: a role for SPOUT methyltransferases in protein arginine methylation. Biochemistry 51:5091–5104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Q, Rank G, Tan YT et al (2009) PRMT5-mediated methylation of histone H4R3 recruits DNMT3A, coupling histone and DNA methylation in gene silencing. Nat Struct Mol Biol 16:304–311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong X, Yuan XM, Xu YY et al (2018) CARM1 methylates GAPDH to regulate glucose metabolism and is suppressed in liver cancer. Cell Rep 24:3207–3223

    Article  CAS  PubMed  Google Scholar 

  • Zou L, Zhang H, Du C et al (2012) Correlation of SRSF1 and PRMT1 expression with clinical status of pediatric acute lymphoblastic leukemia. J Hematol Oncol 5:42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Ping Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, TS., Cheng, JK., Lei, QY., Wang, YP. (2019). A Switch for Transcriptional Activation and Repression: Histone Arginine Methylation. In: Jurga, S., Barciszewski, J. (eds) The DNA, RNA, and Histone Methylomes. RNA Technologies. Springer, Cham. https://doi.org/10.1007/978-3-030-14792-1_21

Download citation

Publish with us

Policies and ethics