Skip to main content

Machine Learning Parameter Estimation in a Smart-City Paradigm for the Medical Field

  • Chapter
  • First Online:
Smart Cities Performability, Cognition, & Security

Abstract

Machine learning (ML)-based parameter estimation and classification have been receiving great attention in data modelling and processing. The Gaussian mixture model (GMM) is a probabilistic model that represents the presence of subpopulations, which works well with a parameter estimation strategy. In this chapter, maximum likelihood estimation based on expectation maximization is used for the parameter estimation approach; the estimated parameters are used for the training and testing of medical images for normality and abnormality. The mean and the covariance, considered to be the parameters, are used in GMM-based training for the classifier. Support vector machine (SVM), a discriminative classifier, and the GMM, a generative model classifier, are the two most popular techniques. The classification strategy performances of both classifiers have better proficiency than other classifiers. By combining the SVM and GMM, it is possible to improve classification because estimating the parameters through GMM has very limited features; hence, there is no need to use any feature reduction techniques. The features extracted were used for the training of the classifiers. The testing of medical images for normality was performed with respect to the features that were trained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Al-Turjman, F., & Alturjman, S. (2018). Context-sensitive access in industrial Internet of things (IIoT) healthcare applications. IEEE Transactions on Industrial Informatics, 14(6), 2736–2744.

    Article  Google Scholar 

  2. Al-Turjman, F. (2019). 5G-enabled devices and smart-spaces in social-IoT: An overview. Future Generation Computer Systems, 92(1), 732–744.

    Google Scholar 

  3. Al-Turjman, F. (2018). Modelling green femtocells in smart-grids. Mobile Networks and Applications, 23(4), 940–955.

    Article  Google Scholar 

  4. Al-Turjman, F. (2018). Mobile couriers’ selection for the smart-grid in smart cities’ pervasive sensing. Future Generation Computer Systems, 82(1), 327–341.

    Article  Google Scholar 

  5. Rose, D. C., Arel, I., Karnowski, T. P., & Paquit, V. C. (2010). Applying deep-layered clustering to mammography image analytics. In 2010 Biomedical Sciences and Engineering Conference (pp. 1–4).

    Google Scholar 

  6. Kuang, D., & He, L. (2014). Classification on ADHD with deep learning. In 2014 International Conference on Cloud Computing and Big Data (pp. 27–32).

    Google Scholar 

  7. Bougacha, A., Boughariou, J., Slima, M. B., Hamida, A. B., Mahfoudh, K. B., Kammoun, O., et al. (2018). Comparative study of supervised and unsupervised classification methods: Application to automatic MRI glioma brain tumors segmentation. In 4th International Conference on Advanced Technologies for Signal and Image Processing --ATSIP-2018, March 21–24, 2018, Sousse, Tunisia.

    Google Scholar 

  8. Li, M., & Zhou, Z.-H. (2007). Improve computer-aided diagnosis with machine learning techniques using undiagnosed samples. IEEE Transactions on Systems, Man, and Cybernetics—Part A: Systems and Humans, 37(6), 1088–1098.

    Article  Google Scholar 

  9. Elguebaly, T., & Bouguila, N. (2011). Bayesian learning of finite generalized Gaussian mixture models on images. Signal Processing, 91, 80–820.

    Article  Google Scholar 

  10. Yang, S., & Shen, X. (2018). LEEM: Lean elastic EM for Gaussian mixture model via bounds-based filtering. In 2018 IEEE International Conference on Data Mining.

    Google Scholar 

  11. Ramos-Llordén, G., Arnold, J., Van Steenkiste, G., Jeurissen, B., Vanhevel, F., Van Audekerke, J., et al. (2017). A unified Maximum Likelihood framework for simultaneous motion and T1 estimation in quantitative MR T1 mapping. IEEE Transactions on Medical Imaging, 36(2), 433–446.

    Article  Google Scholar 

  12. Zhang, Z., Zhu, H., & Tao, X. (2017). Image recognition with missing-features based on gaussian mixture model and graph constrained nonnegative matrix factorization. In Engineering in Medicine and Biology Society (EMBC), 2017 39th Annual International Conference of the IEEE, 978-1-5090-2809.

    Google Scholar 

  13. Wang, D., Li, Z., Cao, L., Balas, V. E., Dey, N., Ashour, A. S., et al. (2017). Image fusion incorporating parameter estimation optimized Gaussian mixture model and fuzzy weighted evaluation system: A case study in time-series plantar pressure dataset. IEEE Sensors Journal, 17(5), 1407–1420.

    Article  Google Scholar 

  14. Dutta, A., Ma, O., Toledo, M., Buman, M. P., & Bliss, D. W. (2016). Comparing Gaussian mixture model and hidden Markov model to classify unique physical activities from accelerometer sensor data. In 2016 15th IEEE International Conference on Machine Learning and Applications.

    Google Scholar 

  15. Ji, Z., Xia, Y., Sun, Q., Chen, Q., Xia, D., & Feng, D. D. (2012). Fuzzy local Gaussian mixture model for brain MR image segmentation. IEEE Transactions on Information Technology in Biomedicine, 16(3), 339–347.

    Article  Google Scholar 

  16. Ihsani, A., & Farncombe, T. (2016). A kernel density estimator-based maximum a posteriori image reconstruction method for dynamic emission tomography imaging. IEEE Transactions on Image Processing, 25(5), 2233–2248.

    Article  MathSciNet  Google Scholar 

  17. Bogunovic, H., Pozo, J. M., Cárdenes, R., San Román, L., & Frangi, A. F. (2013). Anatomical labeling of the circle of Willis using maximum a posteriori probability estimation. IEEE Transactions on Medical Imaging, 32(9), 1587–1599.

    Article  Google Scholar 

  18. Li, W., Ogunbona, P., de Silva, C., & Attikiouze, Y. (2011). Semi-supervised maximum a posteriori probability segmentation of brain tissues from dual-echo magnetic resonance scans using incomplete training data. IET Image Processing, 5(3), 222–232. https://doi.org/10.1049/iet-ipr.2009.0082

    Article  Google Scholar 

  19. Crimi, A., Lillholm, M., Nielsen, M., Ghosh, A., de Bruijne, M., Dam, E. B., et al. (2011). Maximum a posteriori estimation of linear shape variation with application to vertebra and cartilage modeling. IEEE Transactions on Medical Imaging, 30(8), 1514–1526.

    Article  Google Scholar 

  20. De Pierro, A. R., & Yamagishi, M. E. B. (2001). Fast EM-like methods for maximum a posteriori estimates in emission tomography. IEEE Transactions on Medical Imaging, 20(4), 280–288.

    Article  Google Scholar 

  21. Mihlin, A., & Levin, C. S. (2017). An expectation maximization method for joint estimation of emission activity distribution and photon attenuation map in PET. IEEE Transactions on Medical Imaging, 36(1), 214–224.

    Article  Google Scholar 

  22. Vapnik, V. (1998). Statistical learning theory. New York: Wiley.

    MATH  Google Scholar 

  23. Scholkopf, B., Kah-Kay, S., Burges, C. J., Girosi, F., Niyogi, P., Poggio, T., et al. (1997). Comparing support vector machines with Gaussian kernels to radial basis function classifiers. IEEE Transactions on Signal Processing, 45, 2758–2765.

    Article  Google Scholar 

  24. El-Naqa, I., Yang, Y., Wernick, M. N., Galatsanos, N. P., & Nishikawa, R. M. (2002). A support vector machine approach for detection of microcalcifications. IEEE Transactions on Medical Imaging, 21(12), 1552–1563.

    Article  Google Scholar 

  25. Pontil, M., & Verri, A. (1998). Support vector machines for 3-D object recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20, 637–646.

    Article  Google Scholar 

  26. Li, W., Lu, Z., Feng, Q., & Chen, W. (2010). Meticulous classification using support vector machine for brain images retrieval. In 2010 International Conference of Medical Image Analysis and Clinical Application. 978-1-4244-8012-8/10.

    Google Scholar 

  27. Said, S., Hajri, H., Bombrun, L., & Vemuri, B. C. (2018). Gaussian distributions on Riemannian symmetric spaces: Statistical learning with structured covariance matrices. IEEE Transactions on Information Theory, 64(2), 752–772.

    Article  MathSciNet  Google Scholar 

  28. Liang, Z., & Wang, S. (2009). An EM approach to MAP solution of segmenting tissue mixtures: A numerical analysis. IEEE Transactions on Medical Imaging, 28(2), 297–310.

    Article  Google Scholar 

  29. You, J., Wang, J., & Liang, Z. (2007). Range condition and ML-EM checkerboard artifacts. IEEE Transactions on Nuclear Science, 54(5), 1696–1702.

    Article  Google Scholar 

  30. Reader, A. J., Manavaki, R., Zhao, S., Julyan, P. J., Hastings, D. L., & Zweit, J. (2002). Accelerated list-mode EM algorithm. IEEE Transactions on Nuclear Science, 49(1), 42–49.

    Article  Google Scholar 

  31. Parra, L., & Barrett, H. H. (1998). List-mode likelihood: EM algorithm and image quality estimation demonstrated on 2-D PET. IEEE Transactions on Medical Imaging, 17(2), 228–235.

    Article  Google Scholar 

  32. Browne, J., & De Pierro, A. R. (1996). A row-action alternative to the EM algorithm for maximizing likelihoods in emission tomography. IEEE Transactions on Medical Imaging, 15(5), 687–699.

    Article  Google Scholar 

  33. Liu, J., Ku, Y. B., & Leung, S. (2012). Expectation-maximization algorithm with total variation regularization for vector-valued image segmentation. Journal of Visual Communication and Image Representation, 23, 1234–1244.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Naveen Balaji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhuvaneswari, M., Balaji, G.N., Al-Turjman, F. (2020). Machine Learning Parameter Estimation in a Smart-City Paradigm for the Medical Field. In: Al-Turjman, F. (eds) Smart Cities Performability, Cognition, & Security. EAI/Springer Innovations in Communication and Computing. Springer, Cham. https://doi.org/10.1007/978-3-030-14718-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-14718-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-14717-4

  • Online ISBN: 978-3-030-14718-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics