Skip to main content

Wavelet Boundary Element Methods: Adaptivity and Goal-Oriented Error Estimation

  • Chapter
  • First Online:
Advanced Finite Element Methods with Applications (FEM 2017)

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 128))

Included in the following conference series:

Abstract

This article is dedicated to the adaptive wavelet boundary element method. It computes an approximation to the unknown solution of the boundary integral equation under consideration with a rate \(N_{\text{dof}}^{-s}\), whenever the solution can be approximated with this rate in the setting determined by the underlying wavelet basis. The computational cost scale linearly in the number N dof of degrees of freedom. Goal-oriented error estimation for evaluating linear output functionals of the solution is also considered. An algorithm is proposed that approximately evaluates a linear output functional with a rate \(N_{\text{dof}}^{-(s+t)}\), whenever the primal solution can be approximated with a rate \(N_{\text{dof}}^{-s}\) and the dual solution can be approximated with a rate \(N_{\text{dof}}^{-t}\), while the cost still scale linearly in N dof. Numerical results for an acoustic scattering problem and for the point evaluation of the potential in case of the Laplace equation are reported to validate and quantify the approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In accordance with [23], one might also consider a compact perturbation of an elliptic, symmetric, and continuous boundary integral operator.

References

  1. Bakry, H.: A goal-oriented a posteriori error estimate for the oscillating single layer integral equation. Appl. Math. Lett. 69, 133–137 (2017)

    Article  MathSciNet  Google Scholar 

  2. Bangerth, W., Rannacher, R.: Adaptive finite element method for differential equations. Lectures Math. ETH Zürich, Birkhäuser (2003)

    Google Scholar 

  3. Bebendorf, M.: Approximation of boundary element matrices. Numer. Math. 86, 565–589 (2000)

    Article  MathSciNet  Google Scholar 

  4. Bebendorf, M., Rjasanow, S.: Adaptive low-rank approximation of collocation matrices. Computing 70, 1–24 (2003)

    Article  MathSciNet  Google Scholar 

  5. Becker, R., Rannacher, R.: An optimal control approach to a posteriori error estimation in finite element methods. Acta Numer. 10, 1–102 (2001)

    Article  MathSciNet  Google Scholar 

  6. Becker, R., Estecahandy, E., Trujillo, D.: Weighted marking for goal-oriented adaptive finite element methods. SIAM J. Numer. Anal. 49(6), 2451–2469 (2011)

    Article  MathSciNet  Google Scholar 

  7. Beylkin, G., Coifman, R., Rokhlin, V.: The fast wavelet transform and numerical algorithms. Commun. Pure Appl. Math. 44, 141–183 (1991)

    Article  MathSciNet  Google Scholar 

  8. Binev, P., DeVore, R.: Fast computation in adaptive tree approximation. Numer. Math. 97, 193–217 (2004)

    Article  MathSciNet  Google Scholar 

  9. Cohen, A., Dahmen, W., DeVore, R.: Adaptive wavelet methods for elliptic operator equations. Convergence rates. Math. Comput. 70, 27–75 (2001)

    Article  MathSciNet  Google Scholar 

  10. Cohen, A., Dahmen, W., DeVore, R.: Adaptive wavelet methods II. Beyond the elliptic case. Found. Comput. Math. 2, 203–245 (2002)

    MATH  Google Scholar 

  11. Colton, D., Kress, R.: Integral equation methods in scattering theory. Wiley, New York (1983)

    MATH  Google Scholar 

  12. Dahmen, W., Schneider, R.: Composite wavelet bases for operator equations. Math. Comput. 68, 1533–1567 (1999)

    Article  MathSciNet  Google Scholar 

  13. Dahmen, W., Schneider, R.: Wavelets on manifolds I. Construction and domain decomposition. Math. Anal. 31, 184–230 (1999)

    MATH  Google Scholar 

  14. Dahmen, W., Harbrecht, H., Schneider, R.: Compression techniques for boundary integral equations. Asymptotically optimal complexity estimates. SIAM J. Numer. Anal. 43(6), 2251–2271 (2006)

    Article  Google Scholar 

  15. Dahmen, W., Kunoth, A., Vorloeper, J.: Convergence of adaptive wavelet methods for goal-oriented error estimation. In: Bermudez de Castro, A., Gomez, D., Quintely, P., Salgado, P. (eds.) Numerical Mathematics and Advanced Applications, pp. 39–61. Springer, Berlin (2006)

    Chapter  Google Scholar 

  16. Dahmen, W., Harbrecht, H., Schneider, R.: Adaptive methods for boundary integral equations. Complexity and convergence estimates. Math. Comput. 76, 1243–1274 (2007)

    MATH  Google Scholar 

  17. DeVore, R.A.: Nonlinear approximation. Acta Numer. 7, 51–150 (1998)

    Article  MathSciNet  Google Scholar 

  18. Eriksson, K., Estep, D., Hansbo, P., Johnson, C.: Introduction to adaptive methods for differential equations. Acta Numer. 4, 105–158 (1995)

    Article  MathSciNet  Google Scholar 

  19. Faermann, B.: Localization of the Aronszajn-Slobodeckij norm and application to adaptive boundary element methods. Part II: the three-dimensional case. Numer. Math. 92(3), 467–499 (2002)

    MathSciNet  MATH  Google Scholar 

  20. Feischl, M., Karkulik, M., Melenk, J.M., Praetorius, D.: Quasi-optimal convergence rate for an adaptive boundary element method. SIAM J. Numer. Anal. 51(2), 1327–1348 (2013)

    Article  MathSciNet  Google Scholar 

  21. Feischl, M., Gantner, G., Haberl, A., Praetorius, D., Führer, T.: Adaptive boundary element methods for optimal convergence of point errors. Numer. Math. 132(3), 541–567 (2016)

    Article  MathSciNet  Google Scholar 

  22. Feischl, M., Praetorius, D., van der Zee, K.G.: An abstract analysis of optimal goal-oriented adaptivity. SIAM J. Numer. Anal. 54(3), 1423–1448 (2016)

    Article  MathSciNet  Google Scholar 

  23. Gantumur, T.: An optimal adaptive wavelet method for nonsymmetric and indefinite elliptic problems. J. Comput. Appl. Math. 211(1), 90–102 (2008)

    Article  MathSciNet  Google Scholar 

  24. Gantumur, T.: Adaptive boundary element methods with convergence rates. Numer. Math. 124, 471–516 (2013)

    Article  MathSciNet  Google Scholar 

  25. Gantumur, T., Stevenson, R.: Computation of singular integral operators in wavelet coordinates. Computing 76, 77–107 (2006)

    Article  MathSciNet  Google Scholar 

  26. Gantumur, T., Harbrecht, H., Stevenson, R.: An optimal adaptive wavelet method for elliptic equations without coarsening. Math. Comput. 76, 615–629 (2007)

    Article  Google Scholar 

  27. Greengard, L., Rokhlin, V.: A fast algorithm for particle simulation. J. Comput. Phys. 73, 325–348 (1987)

    Article  MathSciNet  Google Scholar 

  28. Hackbusch, W.: A sparse matrix arithmetic based on \(\mathcal {H}\)-matrices. Part I: Introduction to \(\mathcal {H}\)-matrices. Computing 64, 89–108 (1999)

    Google Scholar 

  29. Hackbusch, W., Nowak, Z.P.: On the fast matrix multiplication in the boundary element method by panel clustering. Numer. Math. 54, 463–491 (1989)

    Article  MathSciNet  Google Scholar 

  30. Harbrecht, H., Schneider, R.: Biorthogonal wavelet bases for the boundary element method. Math. Nachr. 269–270, 167–188 (2004)

    Article  MathSciNet  Google Scholar 

  31. Harbrecht, H., Schneider, R.: Wavelet Galerkin schemes for boundary integral equations. Implementation and quadrature. SIAM J. Sci. Comput. 27(4), 1347–1370 (2006)

    Article  MathSciNet  Google Scholar 

  32. Harbrecht, H., Stevenson, R.: Wavelets with patchwise cancellation properties. Math. Comput. 75(256), 1871–1889 (2006)

    Article  MathSciNet  Google Scholar 

  33. Harbrecht, H., Utzinger, M.: On adaptive wavelet boundary element methods. J. Comput. Math. 36(1), 90–109 (2018)

    Article  MathSciNet  Google Scholar 

  34. Hsiao, G.C., Wendland, W.L.: Boundary Integral Equations. Applied Mathematical Sciences, vol. 164. Springer, Berlin (2008)

    Google Scholar 

  35. Huybrechs, D., Simoens, J., Vandevalle, S.: A note on wave number dependence of wavelet matrix compression for integral equations with oscillatory kernel. J. Comput. Appl. Math. 172, 233–246 (2004)

    Article  MathSciNet  Google Scholar 

  36. Mommer, M.S., Stevenson, R.P.: A goal-oriented adaptive finite element method with convergence rates. SIAM J. Numer. Anal. 47(2), 861–886 (2009)

    Article  MathSciNet  Google Scholar 

  37. Rokhlin, V.: Rapid solution of integral equations of classical potential theory. J. Comput. Phys. 60, 187–207 (1985)

    Article  MathSciNet  Google Scholar 

  38. Tyrtyshnikov, E.E.: Mosaic skeleton approximation. Calcolo 33, 47–57 (1996)

    Article  MathSciNet  Google Scholar 

  39. Utzinger, M.: An Adaptive Wavelet Method for the Solution of Boundary Integral Equations in Three Dimensions. PhD thesis, Universität Basel, Switzerland (2016)

    Google Scholar 

Download references

Acknowledgements

This research has been supported by the Swiss National Science Foundation (SNSF) through the DACH-project “BIOTOP: Adaptive Wavelet and Frame Techniques for Acoustic BEM”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helmut Harbrecht .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Harbrecht, H., Moor, M. (2019). Wavelet Boundary Element Methods: Adaptivity and Goal-Oriented Error Estimation. In: Apel, T., Langer, U., Meyer, A., Steinbach, O. (eds) Advanced Finite Element Methods with Applications. FEM 2017. Lecture Notes in Computational Science and Engineering, vol 128. Springer, Cham. https://doi.org/10.1007/978-3-030-14244-5_8

Download citation

Publish with us

Policies and ethics