Skip to main content

Uniform Exponential Stability of Galerkin Approximations for a Damped Wave System

  • Chapter
  • First Online:
Book cover Advanced Finite Element Methods with Applications (FEM 2017)

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 128))

Included in the following conference series:

  • 942 Accesses

Abstract

We consider the numerical approximation of a linear damped wave system modeling the propagation of pressure waves in a pipeline by Galerkin approximations in space and appropriate time-stepping schemes. By careful energy estimates, we prove exponential decay of the physical energy on the continuous level and uniform exponential stability of semi-discrete and fully discrete approximations obtained by mixed finite element discretization in space and certain one-step methods in time. The validity and limitations of the theoretical results are demonstrated by numerical tests.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Babin, A.V., Vishik, M.I.: Regular attractors of semigroups and evolution equations. J. Math. Pures Appl. 62, 441–491 (1983)

    MathSciNet  MATH  Google Scholar 

  2. Babin, A.V., Vishik, M.I.: Attractors of Evolution Equations. Studies in Mathematics and Its Applications, vol. 25. North Holland, Amsterdam (1991)

    Google Scholar 

  3. Banks, H.T., Ito, K., Wang, C.: Exponentially stable approximations of weakly damped wave equations. In: Estimation and Control of Distributed Parameter Systems. International Series of Numerical Mathematics, vol. 100, pp. 6–33. Birkhäuser, Basel (1991)

    Google Scholar 

  4. Brezzi, F.: On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers. RAIRO Anal. Numer. 2, 129–151 (1974)

    MathSciNet  MATH  Google Scholar 

  5. Brouwer, J., Gasser, I., Herty, M.: Gas pipeline models revisited: model hierarchies, non-isothermal models and simulations of networks. Multiscale Model. Simul. 9, 601–623 (2011)

    Article  MathSciNet  Google Scholar 

  6. Chen, G.: Energy decay estimates and exact boundary controlability for wave equation in a bounded domain. J. Math. Pures Appl. 5, 249–274 (1979)

    Google Scholar 

  7. Cox, S., Zuazua, E.: The rate at which energy decays in a damped string. Commun. Partial Differ. Equ. 19, 213–243 (1994)

    Article  MathSciNet  Google Scholar 

  8. Dupont, T.: l 2 estimates for Galerkin methods for second-order hyperbolic equations. SIAM J. Numer. Anal. 10, 880–889 (1973)

    Google Scholar 

  9. Egger, H., Kugler, T.: Uniform Exponential Stability of Galerkin Approximations for Damped Wave Systems (2015). arXive:1511.08341

    Google Scholar 

  10. Egger, H., Kugler, T.: Damped wave systems on networks: exponential stability and uniform approximations. Numer. Math. (2017). https://doi.org/10.1007/s00211-017-0924-4

  11. Egger, H., Radu, B.: Super-convergence and post-processing for mixed finite element approximations of the wave equation (2016). arXiv:1608.03818

    Google Scholar 

  12. Ervedoza, S.: Observability properties of a semi-discrete 1d wave equation derived from a mixed finite element method on nonuniform meshes. ESAIM Control Optim. Calc. Var. 16, 298–326 (2010)

    Article  MathSciNet  Google Scholar 

  13. Ervedoza, S., Zuazua, E.: Uniformly exponentially stable approximations for a class of damped systems. J. Math. Pures Appl. 91, 20–48 (2009)

    Article  MathSciNet  Google Scholar 

  14. Evans, L.C.: Partial differential equations. In: Graduate Studies in Mathematics, vol. 19. American Mathematical Society, Providence (1998)

    Google Scholar 

  15. Fridman, E.: Observers and initial state recovering for a class of hyperbolic systems via lyapunov method. Automatica 49, 2250–2260 (2013)

    Article  MathSciNet  Google Scholar 

  16. Gao, F., Chi, C.: Unconditionally stable difference schemes for a one-space-dimensional linear hyperbolic equation. Appl. Math. Comput. 187, 1272–1276 (2007)

    MathSciNet  MATH  Google Scholar 

  17. Geveci, T.: On the application of mixed finite element methods to the wave equations. RAIRO Model. Math. Anal. Numer. 22, 243–250 (1988)

    Article  MathSciNet  Google Scholar 

  18. Glowinski, R., Kinton, W., Wheeler, M.F.: A mixed finite element formulation for the boundary controllability of the wave equation. Int. J. Numer. Methods Eng. 27, 623–635 (1989)

    Article  MathSciNet  Google Scholar 

  19. Grote, M.J., Mitkova, T.: High-order explicit local time-stepping methods for damped wave equations. J. Comput. Appl. Math. 239, 270–289 (2013)

    Article  MathSciNet  Google Scholar 

  20. Guinot, V.: Wave propagation in fluids: models and numerical techniques. ISTE and Wiley, London (2008)

    Book  Google Scholar 

  21. Joly, P.: Variational methods for time-dependent wave propagation problems. In: Topics in Computational Wave Propagation, LNCSE, vol. 31, pp. 201–264. Springer, Heidelberg (2003)

    Google Scholar 

  22. Karaa, S.: Error estimates for finite element approximations of a viscous wave equation. Numer. Func. Anal. Optim. 32, 750–767 (2011)

    Article  MathSciNet  Google Scholar 

  23. Lagnese, J.: Decay of solutions of wave equations in a bounded region with boundary dissipation. J. Differential Eq. 50, 163–182 (1983)

    Article  MathSciNet  Google Scholar 

  24. Lopez-Gomez, J.: On the linear damped wave equation. J. Differential Eq. 134, 26–45 (1997)

    Article  MathSciNet  Google Scholar 

  25. Pazy, A.: Semigroups of linear operators and applications to partial differential equations. In: Applied Mathematical Sciences, vol. 44, Springer, New York (1983)

    Google Scholar 

  26. Rauch, J., Taylor, M.: Exponential decay of solutions to hyperbolic equations in bounded domains. Indiana Univ. Math. J. 24, 79–86 (1974)

    Article  MathSciNet  Google Scholar 

  27. Rincon, M.A., Copetti, M.I.M.: Numerical analysis for a locally damped wave equation. J. Appl. Anal. Comput. 3, 169–182 (2013)

    MathSciNet  MATH  Google Scholar 

  28. Schwab, C.: p- and hp-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon, Oxford University, New York (1998). Theory and applications in solid and fluid mechanics

    Google Scholar 

  29. Zuazua, E.: Stability and decay for a class of nonlinear hyperbolic problems. Asymptotic Anal. 1, 161–185 (1988)

    MathSciNet  MATH  Google Scholar 

  30. Zuazua, E.: Propagation, observation, and control of waves approximated by finite difference methods. SIAM Rev. 47, 197–243 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to gratefully acknowledge the support by the German Research Foundation (DFG) via grants IRTG 1529, GSC 233, and TRR 154.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Kugler .

Editor information

Editors and Affiliations

Appendix

Appendix

6.1.1 Auxiliary Results

We start with proving a generalized Poincaré inequality.

Lemma 6.12

Let a  L 2(0, 1) and \(\bar a = \int a dx \ne 0\) . Then for any u  H 1(0, 1) we have

$$\displaystyle \begin{aligned} \|u\|{}_{L^2(0,1)} \le \tfrac{1}{\pi}\big( 1 + \tfrac{1}{\bar a} \|a-\bar a\|{}_{L^2(0,1)} \big) \ \|\partial_x u\|{}_{L^2(0,1)} + \tfrac{1}{\bar a} \big| \int_0^1 a u \; dx\big|, \end{aligned} $$

Proof

Let \(\bar u = \int _0^1 u\) be the average of u and ∥⋅∥ the norm of L 2(0, 1). Then

$$\displaystyle \begin{aligned} \|u\| \le \|u-\bar u\| + \|\bar u\| \le \tfrac{1}{\pi} \|\partial_x u\| + \|\bar u\|, \end{aligned} $$

where we used the standard Poincaré inequality. To bound the last term, observe that

$$\displaystyle \begin{aligned} \bar u = \tfrac{1}{\bar a} \int_0^1 \bar a u \; dx = \tfrac{1}{\bar a} \int_0^1 (\bar a -a) \; u + a u \; dx = \tfrac{1}{\bar a} \int_0^1 (\bar a -a) \; (u-\bar u) + a u \; dx. \end{aligned} $$

Application of the triangle, Cauchy Schwarz, and Poincaré inequalities yields

$$\displaystyle \begin{aligned} \|\bar u\| \le \tfrac{1}{\bar a} \|\bar a - a\| \|u - \bar u\| + \tfrac{1}{\bar a} |\int_0^1 a u \; dx| \le \tfrac{\|\bar a - a\|}{\bar a \pi} \|\partial_x u\| + \tfrac{1}{\bar a} |\int_0^1 a u \; dx|. \end{aligned} $$

The assertion of the lemma now follows by combination of the two estimates. □

An application of this lemma to solutions of the damped wave system yields the following estimate which will be used several times below.

Lemma 6.13

Let (u, p) be smooth solution of (6.3)(6.5) and 0 < a 0 ≤ a(x) ≤ a 1 . Then

$$\displaystyle \begin{aligned} \|u(t)\|{}_{L^2(0,1)} \le \tfrac{a_1}{a_0} \|\partial_t p(t)\|{}_{L^2(0,1)} + \tfrac{1}{a_0} \big| \|\partial_t u(t)\|. \end{aligned} $$

Proof

Using the bounds for the parameter, we obtain from the previous lemma that

$$\displaystyle \begin{aligned} \|u\|{}_{L^2(0,1)} \le \tfrac{a_1}{a_0} \|\partial_x u\|{}_{L^2(0,1)} + \tfrac{1}{a_0} \big| \int_0^1 a u \; dx\big|. \end{aligned} $$

Note that this estimate holds for any function u ∈ H 1(0, 1). Using the mixed variational characterization of the solution, we further obtain

$$\displaystyle \begin{aligned} |\int_0^1 a u \; dx| = |(au, 1)| = |-(\partial_t u, 1) + (p, \partial_x 1)| = |(\partial_t u, 1)| \le \|\partial_t u\|. \end{aligned} $$

Note that the boundary condition on the pressure was used implicitly here. □

6.1.2 Proof of the Theorem 6.1 for k = 1

To establish the decay estimate for the energy \(E^1(t) = \frac {1}{2} \big (\|\partial _t u(t)\|{ }^2 + \|\partial _t p(t)\|{ }^2 \big )\), let us define the modified energy

$$\displaystyle \begin{aligned}E_\epsilon^1(t) = E^1(t) + \epsilon (\partial_t u(t),u(t)). \end{aligned}$$

We assume that (u, p) is a classical solution of (6.3)–(6.5), such that the energies are finite. As a first step, we will show now that for appropriate choice of 𝜖, the two energies E 1 and \(E^1_\epsilon \) are equivalent.

Lemma 6.14

Let \(|\epsilon | \le \frac {a_0}{ 4 +2 a_1}\) . Then

$$\displaystyle \begin{aligned} \tfrac{1}{2} E^1(t) \le E^1_\epsilon(t) \le \tfrac{3}{2} E^1(t). \end{aligned}$$

Proof

We only have to estimate the additional term in the modified energy. By the Cauchy-Schwarz inequality and the estimate of Lemma 6.13, we get

$$\displaystyle \begin{aligned} (\partial_t u(t),u) \le \|\partial_t u(t)\| \|u(t)\| \le \tfrac{1}{a_0} \|\partial_t u(t)\|{}^2 + \tfrac{a_1}{a_0} \|\partial_t u(t)\| \|\partial_t p(t)\|. \end{aligned}$$

Using Young’s inequality to bound the last term yields

$$\displaystyle \begin{aligned} |(\partial_t u(t),u(t))| \le \tfrac{2+a_1}{2a_0} \|\partial_t u(t)\|{}^2 + \tfrac{a_1}{2a_0} \|\partial_t p(t)\|{}^2 \le \tfrac{2+a_1}{2a_0} \big(\|\partial_t u(t)\|{}^2 + \|\partial_t p(t)\|{}^2 \big). \end{aligned}$$

The bound on 𝜖 and the definition of E 1(t) further yields \(|\epsilon (\partial _t u(t), u(t))| \le \frac {1}{2} E^1(t)\), from which the assertion of the lemma follows via the triangle inequality. □

We can now establish the exponential decay for the modified energy.

Lemma 6.15

Let \(0 \le \epsilon \le \tfrac {2a_0^3}{8 a_0^2+ 4 a_0^2 a_1 + 2 a_0 a_1 +a_1^4}\) . Then

$$\displaystyle \begin{aligned} E^1_\epsilon(t) \le e^{-2 \epsilon (t-s)/3} E^1_\epsilon(s). \end{aligned}$$

Proof

To avoid technicalities, let us assume that the solution is sufficiently smooth first, such that all manipulations are well-defined. By the definition of the modified energy and the energy identity given in Lemma 6.3, we have

$$\displaystyle \begin{aligned} \begin{array}{rcl} \tfrac{d}{dt} E^1_\epsilon(t) &\displaystyle &\displaystyle = \tfrac{d}{dt} E^1(t) + \epsilon \tfrac{d}{dt} (\partial_t u(t),u(t)) \\ &\displaystyle &\displaystyle \le - a_0 \|\partial_t u(t)\|{}^2 + \epsilon \tfrac{d}{dt} (\partial_t u(t),u(t)). \end{array} \end{aligned} $$

The last term can be expanded as

$$\displaystyle \begin{aligned} \epsilon \tfrac{d}{dt} (\partial_t u(t),u(t)) = \epsilon \|\partial_t u(t)\|{}^2 + \epsilon (\partial_{tt} u(t), u(t)). \end{aligned} $$
(6.19)

Using the fact that (u, p) as well as ( t u, t p) solve the variational principle, we can estimate the last term by

$$\displaystyle \begin{aligned} \begin{array}{rcl} (\partial_{tt} u(t), u(t)) &\displaystyle &\displaystyle = (\partial_t p(t), \partial_x u(t)) - (a \partial_t u(t), u(t)) \\ &\displaystyle &\displaystyle = -(\partial_t p(t), \partial_t p(t)) - (a \partial_t u(t), u(t)) \\ &\displaystyle &\displaystyle \le -\|\partial_t p(t)\|{}^2 + a_1 \|\partial_t u(t)\| \|u(t)\|. \end{array} \end{aligned} $$

Using Lemma 6.13 to bound ∥u(t)∥ and Young’s inequality, we further get

$$\displaystyle \begin{aligned} \begin{array}{rcl} (\partial_{tt} u(t), u(t)) &\displaystyle &\displaystyle \le -\|\partial_t p(t)\|{}^2 + \tfrac{a_1}{a_0} \|\partial_t u(t)\|{}^2 + \tfrac{a_1^2}{a_0} \|\partial_t u(t)\| \|\partial_t p(t)\| \\ &\displaystyle &\displaystyle \le -\tfrac{1}{2} \|\partial_t p(t)\|{}^2 + \big( \tfrac{a_1}{a_0} + \tfrac{a_1^4}{2a_0^2} \big) \|\partial_t u(t)\|{}^2. \end{array} \end{aligned} $$

Inserting this estimate in (6.19) then yields

$$\displaystyle \begin{aligned} \frac{d}{dt} E^1_\epsilon(t) \le -\big(a_0 - \epsilon (1+\tfrac{a_1}{a_0} + \tfrac{a_1^4}{2 a_0^2})\big) \|\partial_t u(t)\|{}^2 - \tfrac{\epsilon}{2} \|\partial_t p(t)\|{}^2. \end{aligned}$$

The two factors are balanced by the choice \(\epsilon = \frac {2 a_0^3}{3 a_0^2 + 2 a_0 a_1 + a_1^4}\). In order to satisfy also the condition of the Lemma 6.14, we enlarge the denominator by \(5a_0^2 + 4 a_0^2a_1\), which yields the expression for 𝜖 stated in the lemma. In summary, we thus obtain

$$\displaystyle \begin{aligned} \tfrac{d}{dt} E^1_\epsilon(t) \le -\epsilon E^1(t) \le -\tfrac{2\epsilon}{3} E^1_\epsilon(t). \end{aligned}$$

The result for smooth solutions now follows by integration. The general case is obtained by smooth approximation and continuity; cf. the proof of Lemma 6.3. □

Combination of the previous estimates yields the assertion of Theorem 6.1 for k = 1.

6.1.3 Proof of Theorem 6.1 for k = 0 and k ≥ 2

We will first show how the estimate for k = 0 can be deduced from that for k = 1. Let u 0, p 0 ∈ L 2(0, 1) be given and consider the following stationary problem

$$\displaystyle \begin{aligned} \begin{array}{rcl} \partial_x \bar p + a \bar u &\displaystyle = u_0, \qquad \mbox{in } (0,1), \\ \partial_x \bar u &\displaystyle = p_0, \qquad \mbox{in } (0,1), \end{array} \end{aligned} $$

with boundary condition \(\bar p=0\) on {0, 1}. Using Lemma 6.2, we readily obtain

Lemma 6.16

Let 0 < a 0 ≤ a(x) ≤ a 1 . Then there exists a unique strong solution \((\bar u,\bar p) \in H^1(0,1) \times H_0^1(0,1)\) and \(\|\bar u\|{ }_{H^1(0,1)} + \|\bar p\|{ }_{H^1(0,1)} \le C \big ( \|u_0\| + \|p_0\| \big )\).

Let us now define

$$\displaystyle \begin{aligned} U(t) = \int_0^t u(s) ds - \bar u \qquad \mbox{and} \qquad P(t) = \int_0^t p(s) ds - \bar p. \end{aligned}$$

Then (U, P) is classical solution of the damped wave system (6.3)–(6.5) with initial values \(U(0)=-\bar u\) and \(P(0)=-\bar p\). Applying Theorem 6.1 for k = 1 to (U, P) yields

$$\displaystyle \begin{aligned} \begin{array}{rcl} &\displaystyle &\displaystyle \|u(t)\|{}^2 + \|p(t)\|{}^2 = \|\partial_t U(t)\|{}^2 + \|\partial_t P(t)\|{}^2 \\ &\displaystyle &\displaystyle \le C e^{-\alpha (t-s) } \big(\|\partial_t U(s)\|{}^2 + \|\partial_t P(s)\|{}^2 \big) = C e^{-\alpha (t-s)} \big( \|u(s)\|{}^2 + \|p(s)\|{}^2 \big). \end{array} \end{aligned} $$

This yields the assertion of Theorem 6.1 for k = 0. The estimates for k ≥ 2 follow by simply applying the estimate for k = 0 to the derivatives \((\partial _t^k u, \partial _t^k p)\).

6.1.4 Proof of the Theorem 6.3

Let us start with considering the case k = 1. To establish the decay estimate for the energy \(E_h^{1,n}=\frac {1}{2}(\|d_\tau u_h^n\|{ }^2+\|d_\tau p_h^n\|{ }^2)\), let us define the modified energy

$$\displaystyle \begin{aligned} E_{h,\epsilon}^{1,n}= E_h^{1,n}+\epsilon(d_\tau u_h^n,u_h^{n,\theta}). \end{aligned}$$

As before, the two energies \( E_h^{1,n}\) and \( E_{h,\epsilon }^{1,n}\) are equivalent for appropriate choice of 𝜖.

Lemma 6.17

Let \(|\epsilon |<\frac {a_0}{4+2a_1}\) . Then

$$\displaystyle \begin{aligned} \frac{1}{2} E_h^{1,n}\le E_{h,\epsilon}^{1,n}\le \frac{3}{2} E_h^{1,n}. \end{aligned}$$

The proof of this assertion follows almost verbatim as that of Lemma 6.14. With similar arguments as on the continuous level, we can then also establish the exponential decay estimate for the modified energy \( E_{h,\epsilon }^{1,n}\).

Lemma 6.18

Let \(\frac {1}{2}<\theta \le 1\) , \(0<\epsilon \le \epsilon _0=\frac {2a_0^3}{8a_0^2+4a_0^2a_1+3a_0a_1+4a_1^4}\) , and 0 < τ  τ 0 with

$$\displaystyle \begin{aligned} \tau_0=\tfrac{1}{\epsilon_0}\tfrac{\theta-\frac{1}{2}}{\tfrac{5}{4}\theta^2+\frac{a_1}{2a_0}\theta^2+\frac{(1-\theta)^2}{4}+\tfrac{\theta(1-\theta)}{2}}. \end{aligned}$$

Then there holds \(E_{h,\epsilon }^{1,n} \le e^{-\epsilon (n-m)\tau /3} E_{h,\epsilon }^{1,m}\) for all m  n.

Note that the maximal step size τ 0 only depends on a 0, a 1, and the choice of θ. Moreover, observe that the condition θ > 1∕2 is required here to make τ 0 positive.

Proof

Following the arguments of the proof of Lemma 6.15, we start with

$$\displaystyle \begin{aligned} \begin{array}{rcl} d_\tau E_{h,\epsilon}^{1,n} &\displaystyle &\displaystyle = d_\tau E_{h}^{1,n} + \epsilon d_\tau (d_\tau u_h^n, u_h^{n,\theta}) \\ &\displaystyle &\displaystyle \le - a_0 \|d_\tau u_h^{n,\theta}\|{}^2 - (\theta-\tfrac{1}{2}) \tau \big(\|d_{\tau\tau} u_h^{n}\|{}^2 + \|d_{\tau\tau} p_h^{n}\|{}^2 \big) + \epsilon d_\tau (d_\tau u_h^n, u_h^{n,\theta}). \end{array} \end{aligned} $$

The last term can be expanded as

$$\displaystyle \begin{aligned} d_\tau (d_\tau u_h^n, u_h^{n,\theta}) = (d_\tau u_h^n, d_\tau u_h^{n,\theta}) + (d_{\tau\tau} u_h^n, u_h^{n-1,\theta}). \end{aligned}$$

Using \(d_\tau u_h^n=d_\tau u_h^{n,\theta }+(1-\theta )\tau d_{\tau \tau }u_h^n\), the first term of the above expression yields

$$\displaystyle \begin{aligned} (d_\tau u_h^n, d_\tau u_h^{n,\theta}) \le 2\|d_\tau u_h^{n,\theta}\|{}^2 + \tfrac{(1-\theta)^2\tau^2}{4}\|d_{\tau\tau}u_h^n\|{}^2. \end{aligned}$$

To estimate the second term, we use the fact that besides \((u_h^n,p_h^n)\) also \((d_\tau u_h^n,d_\tau p_h^n)\) satisfies Eqs. (6.14) and (6.15). This implies

$$\displaystyle \begin{aligned} \begin{array}{rcl} (d_{\tau\tau} u_h^n, u_h^{n-1,\theta}) &\displaystyle =&\displaystyle (d_\tau p_h^{n,\theta},\partial_x u_h^{n-1,\theta}) -(ad_\tau u_h^{n,\theta},u_h^{n-1,\theta}) \\ &\displaystyle =&\displaystyle -(d_\tau p_h^{n,\theta},d_\tau p_h^{n-1})-(ad_\tau u_h^{n,\theta},u_h^{n-1,\theta}). \end{array} \end{aligned} $$

Using that \(d_\tau p_h^{n-1} = d_\tau p_h^{n,\theta } - \theta \tau d _{\tau \tau } p_h^n\), we see that

$$\displaystyle \begin{aligned} \begin{array}{rcl} -(d_\tau p_h^{n,\theta},d_\tau p_h^{n-1}) &\displaystyle &\displaystyle = -\|d_\tau p_h^{n,\theta}\|{}^2 + \theta\tau (d_\tau p_h^{n,\theta}, d_{\tau\tau} p_h^n) \\ &\displaystyle &\displaystyle \le -\frac{3}{4} \|d_\tau p_h^{n,\theta}\|{}^2 + \theta^2\tau^2 \|d_{\tau\tau} p_h^n\|{}^2. \end{array} \end{aligned} $$

A discrete version of Lemma 6.13 allows us to bound

$$\displaystyle \begin{aligned} \|u_h^{n-1,\theta}\| \le \tfrac{1}{a_0} \|d_\tau u_h^{n-1}\| + \tfrac{a_1}{a_0} \|d_\tau p_h^{n-1}\|. \end{aligned}$$

The remaining term in the above estimate can then be treated by

$$\displaystyle \begin{aligned} \begin{array}{rcl} &\displaystyle &\displaystyle -(ad_\tau u_h^{n,\theta},u_h^{n-1,\theta}) \le \|d_\tau u_h^{n,\theta}\| \big( \tfrac{a_1}{a_0}\|d_\tau u_h^{n-1}\| +\tfrac{a_1^2}{a_0}\|d_\tau p_h^{n-1}\|\big) \\ &\displaystyle &\displaystyle \qquad \le \|d_\tau u_h^{n,\theta} \| \big( \tfrac{a_1}{a_0} \|d_\tau u_h^{n,\theta}\| + \theta \tau \tfrac{a_1}{a_0} \|d_{\tau\tau} u_h^n\| + \tfrac{a_1^2}{a_0} \|d_\tau p_h^{n,\theta}\| + \theta \tau \tfrac{a_1^2}{a_0}\|d_{\tau\tau} p_h^n\|\big), \end{array} \end{aligned} $$

where for the last step, we used the same expansion of \(p_h^{n-1}\) as above and a similar formula for \(u_h^{n-1}\). Via Youngs inequalities and basic manipulations, we then obtain

$$\displaystyle \begin{aligned} \begin{array}{rcl} -(ad_\tau u_h^{n,\theta},u_h^{n-1,\theta}) &\displaystyle &\displaystyle \le (\tfrac{3a_0a_1+4a_1^4}{2a_0^2})\|d_\tau u_h^{n,\theta}\|{}^2 +\tfrac{1}{4}\|d_\tau p_h^{n,\theta}\|{}^2 \\ &\displaystyle &\displaystyle \qquad \qquad +\tfrac{1}{4}\theta^2\tau^2\|d_{\tau\tau}p_h^n\|{}^2 +\tfrac{a_1}{2a_0}\theta^2\tau^2\|d_{\tau\tau}u_h^n\|{}^2. \end{array} \end{aligned} $$

In summary, we thus arrive at

$$\displaystyle \begin{aligned} \begin{array}{rcl} (d_{\tau\tau} u_h^n, u_h^{n-1,\theta}) &\displaystyle &\displaystyle \le \tfrac{3a_0a_1+4a_1^4}{2a_0^2}\|d_\tau u_h^{n,\theta}\|{}^2 -\tfrac{1}{2}\|d_\tau p_h^{n,\theta}\|{}^2 \\ &\displaystyle &\displaystyle \qquad \qquad +\tfrac{5}{4}\theta^2\tau^2\|d_{\tau\tau}p_h^n\|{}^2+\tfrac{a_1}{2a_0}\theta^2\tau^2\|d_{\tau\tau}u_h^n\|{}^2. \end{array} \end{aligned} $$

Putting all estimates together, we finally obtain

$$\displaystyle \begin{aligned} \begin{array}{rcl} d_\tau E_{h,\epsilon}^{1,n} &\displaystyle &\displaystyle \le -\big(a_0-\epsilon \tfrac{4a_0^2 + 3a_0a_1+4a_1^4}{2a_0^2}\big)\|d_\tau u_h^{n,\theta}\|{}^2 -\tfrac{\epsilon}{2}\|d_\tau p_h^{n,\theta}\|{}^2 \\ &\displaystyle &\displaystyle \,\quad -\big(\theta-\tfrac{1}{2}-\epsilon\tau\tfrac{2 a_1 \theta^2 + a_0 (1-\theta)^2}{4a_0}\big)\tau\|d_{\tau\tau}u_h^n\|{}^2 -\big(\theta-\tfrac{1}{2}-\epsilon\tau\tfrac{5\theta^2}{4}\big)\tau\|d_{\tau\tau}p_h^n\|{}^2. \end{array} \end{aligned} $$

By the particular choice of τ 0, we may estimate the terms in the second line from above by \(-\frac {\epsilon }{2} \theta (1-\theta ) \tau ^2 \big ( \|d_{\tau \tau }u_h^n\|{ }^2 + \|d_{\tau \tau }p_h^n\|{ }^2\big )\). The two factors in the first line are balanced by the choice \(\epsilon =\frac {2a_0^3}{5a_0^2+3a_0a_1+4a_1^4}\). In order to satisfy also the condition of Lemma 6.17, we enlarge the denominator by \(3a_0^2+4a_0^2a_1\), and obtain

$$\displaystyle \begin{aligned} \begin{array}{rcl} d_\tau E_{h,\epsilon}^{1,n} &\displaystyle \le -\epsilon_0 \big\{ \tfrac{1}{2} \big( \|d_\tau u_h^{n,\theta}\|{}^2 + \|d_\tau p_h^{n,\theta}\|{}^2\big) + \theta (1-\theta) \tfrac{\tau^2}{2} \big( \|d_{\tau\tau}u_h^n\|{}^2+\|d_{\tau\tau}p_h^n\|{}^2\big) \big\} \\ &\displaystyle = -\epsilon_0 \big( \theta E_h^{1,n} + (1-\theta) E_h^{1,n-1} \big) \le -\epsilon \big( \theta E_h^{1,n} + (1-\theta) E_h^{1,n-1} \big) \end{array} \end{aligned} $$

for 𝜖 ≤ 𝜖 0. By equivalence of the energies stated in Lemma 6.17, this leads to

$$\displaystyle \begin{aligned} E_{h,\epsilon}^{1,n} \le \tfrac{1-\frac{2}{3} \epsilon (1-\theta) \tau}{1+\frac{2}{3}\epsilon \theta \tau} E_{h,\epsilon}^{1,n-1} \le(1-\tfrac{\epsilon\tau}{3})E_{h,\epsilon}^{1,n-1} \le e^{-\epsilon \tau/3} E_{h,\epsilon}^{1,n-1}, \end{aligned}$$

where we used that \( \frac {2}{3}\epsilon \theta \tau \le \frac {2}{3}\epsilon _0 \theta \tau _0 \le 1\) in the second step, which follows from the definition of τ 0. The assertion of the Lemma now follows by induction. □

Remark 6.2

Let us emphasize that the assertion of Lemma 6.18 holds true also for the choice \(\theta =\frac {1}{2} + \lambda \tau \) with λ sufficiently large, but independent of τ.

Using the equivalence of the discrete energies stated in Lemma 6.17, we readily obtain the proof of Theorem 6.3 for the case k = 1. The result for k = 0 and k ≥ 2 follows from the one for k = 1 with the same arguments as on the continuous level.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Egger, H., Kugler, T. (2019). Uniform Exponential Stability of Galerkin Approximations for a Damped Wave System. In: Apel, T., Langer, U., Meyer, A., Steinbach, O. (eds) Advanced Finite Element Methods with Applications. FEM 2017. Lecture Notes in Computational Science and Engineering, vol 128. Springer, Cham. https://doi.org/10.1007/978-3-030-14244-5_6

Download citation

Publish with us

Policies and ethics