Skip to main content

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 120))

  • 808 Accesses

Abstract

In this chapter, a brief literature review has been carried out considering those contributions which are aligned with the objectives of the present book. Since, there are thousands of works dealing with internal and external turbulent flows, therefore, we consider a selection of those contributions which are relevant to the understanding of the new hypothesis on the anisotropic Reynolds stress tensor in Chap. 5. For the sake of completeness, the governing equations of incompressible turbulent flows have been derived in conjunction with the generalised Boussinesq hypothesis on the Reynolds stress tensor. Intermediate mathematical steps are included in the derivations to make graduate and postgraduate students familiar with the heart of the closure problem of anisotropic turbulence. The shortcomings of the generalised Boussinesq hypothesis have also been discussed to emphasise the necessity of a new hypothesis on the Reynolds stress tensor.

Many engineers to-day may consider the problem of turbulence merely as an interesting chapter of mathematical physics. They may be right. However, they should remember that if we meet a practical question in aerodynamic design which we are unable to answer, the reason that we are unable to give a definite answer is almost certainly that it involves turbulence

—Theodore von Kármán, 1937

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Heinz S (2003) Statistical mechanics of turbulent flows. Springer, Berlin, pp 91–188. ISBN 3-540-40103-2

    Chapter  Google Scholar 

  2. Abe K, Jang YJ, Leschziner MA (2003) An investigation of wall-anisotropy expressions and length-scale equations for non-linear eddy-viscosity models. Int J Heat Fluid Flow 24:181–198

    Article  Google Scholar 

  3. Antonia RA, Djenidi L, Spalart PR (1994) Anisotropy of the dissipation tensor in a turbulent boundary layer. Phys Fluids 6(7):2475–2479

    Article  MATH  Google Scholar 

  4. Aris R (1962) Vectors tensors and basic equations of fluid mechanics. Dover Publications Inc., New York, USA. ISBN 0-486-66110-5

    Google Scholar 

  5. Bakosi J, Ristorcelli JR (2010) Probability density function method for variable-density pressure-gradient-driven turbulence and mixing. Technical report, Los Alamos National Laboratory (LANL)

    Google Scholar 

  6. Bakosi J, Ristorcelli JR (2011) Probability density function method for variable-density pressure-gradient-driven turbulence and mixing. In: 49th AIAA aerospace sciences meeting. Orlando, Florida, pp 1–15

    Google Scholar 

  7. Bakosi J, Ristorcelli JR (2013) A stochastic diffusion process for the Dirichlet distribution. Int J Stochastic Anal (Article ID 842981):1–7. http://dx.doi.org/10.1155/2013/842981

    Article  MathSciNet  MATH  Google Scholar 

  8. Bakosi J, Ristorcelli JR (2014) Diffusion processes satisfying a conservation law constraint. Int J Stochastic Anal (Article ID 603692):1–9. http://dx.doi.org/10.1155/2014/603692

    Article  MathSciNet  MATH  Google Scholar 

  9. Batchelor GK (1953) The theory of homogeneous turbulence. Cambridge University Press, Cambridge, United Kingdom. ISBN 978-0-521-04117-1

    Google Scholar 

  10. Boussinesq J (1877) Thorie de l’Ecoulement tourbillant. Mem Prsents par Divers Savants Acad Sci Inst Fr 23:46–50

    Google Scholar 

  11. Bradshaw P (1967) The turbulence structure of equilibrium boundary layers. J Fluid Mech 29(Part 4):625–645

    Article  Google Scholar 

  12. Bradshaw P (1969) The analogy between streamline curvature and buoyancy in turbulent shear flow. J Fluid Mech 36(Part 1):177–191

    Article  MATH  Google Scholar 

  13. Bradshaw P (1996) Turbulence modeling with application to turbomachinery. Prog Aerospace Sci 32:575–624

    Article  Google Scholar 

  14. Bradshaw P, Ferriss DH, Atwell NP (1967) Calculation of boundary-layer development using the turbulent energy equation. J Fluid Mech 28(Part 3):593–616

    Article  Google Scholar 

  15. Bruno R, Carbone V (2016) Turbulence in the solar wind. Springer International Publishing Switzerland, Lecture Notes in Physics vol 928, pp 78–83. ISBN 978-3-319-43439-1

    Google Scholar 

  16. Cebeci T, Smith AMO (1974) Analysis of turbulent boundary layers. Academic Press Inc., New York, USA. ISBN 0-12-164650-5

    Google Scholar 

  17. Cecora RD, Radespiel R, Eisfeld B, Probst A (2015) Differential Reynolds stress modeling for aeronautics. AIAA J 53(3):739–755

    Article  Google Scholar 

  18. Champagne FH, Harris VG, Corrsin S (1970) Experiments on nearly homogeneous turbulent shear flow. J Fluid Mech 41(Part 1):81–139

    Article  Google Scholar 

  19. Cimpoeru IA (2014) Improvement of leading edge separation in conjunction with bluff bodies. Master’s thesis, Cranfield University, School of Engineering, Cranfield, Bedfordshire, United Kingdom, pp 1–91

    Google Scholar 

  20. Craft TJ, Launder BE, Suga K (1996) Development and application of a cubic eddy-viscosity model of turbulence. Int J Heat and Fluid Flow 17:108–115

    Article  Google Scholar 

  21. Craft TJ, Launder BE, Suga K (1997) Prediction of turbulent transitional phenomena with a nonlinear eddy-viscosity model. Int J Heat Fluid Flow 18:15–28

    Article  Google Scholar 

  22. Czibere T (2001) Three dimensional stochastic model of turbulence. J Comput Appl Mech 2(5):7–20

    Google Scholar 

  23. Czibere T (2006) Calculating turbulent flows based on a stochastic model. J Comput Appl Mech 7(2):155–188

    Google Scholar 

  24. Czibere T, Janiga G (2000) Computation of laminar-turbulent transition in pipe flow. In: microCAD’2000, International Computer Science Conference, University of Miskolc, Miskolc, Hungary, Section M, pp 45–50

    Google Scholar 

  25. Czibere T, Kalmár L (2003) Calculation of flow between two coaxial rotating cylinders. In: The 12th international conference on fluid flow technologies conference on modelling fluid flow (CMFF’2003), Budapest, Hungary, pp 551–558

    Google Scholar 

  26. Czibere T, Janiga G, Dombi K (1999) Comparing the computed velocity distributions based on two different algebraic turbulence models with experimental results. In: Second international conference of PhD students, section proceedings, University of Miskolc, Miskolc, Hungary, pp 29–38

    Google Scholar 

  27. Czibere T, Janiga G, Dombi K (1999) Turbulent flow through circular annuli. In: microCAD’1999, International computer science conference, University of Miskolc, Miskolc, Hungary, Section M, pp 43–48

    Google Scholar 

  28. Czibere T, Janiga G, Szabó S, Kecke HJ, Praetor R (1999) Vergleich von mit unterschiedlichen Turbulenz-modellen berechneten Geschwindigkeitsprofilen. In: microCAD’1999, International computer science conference, University of Miskolc, Miskolc, Hungary, Section M, pp 71–74

    Google Scholar 

  29. Czibere T, Szabó S, Juhsz A, Farkas A, Janiga G (1999) Measuring turbulent pipe flow. In: microCAD’1999, International computer science conference, University of Miskolc, Miskolc, Hungary, Section M, pp 75–79

    Google Scholar 

  30. Czibere T, Szabó S, Farkas A, Praetor R, Janiga G (2001) Experimental and theoretical analysis of a coaxial cylindrical channel flow. In: microCAD’2001, International computer science conference. University of Miskolc, Miskolc, Hungary, Section N, pp 25–32

    Google Scholar 

  31. Daly BJ, Harlow FH (1970) Transport equations in turbulence. Phys Fluids 13(11):2634–2649

    Article  Google Scholar 

  32. Davidson PA (2004) Turbulence. An introduction for scientists and engineers. Oxford University Press Inc., New York, USA, ISBN 978-0-19-852949-1

    Google Scholar 

  33. Dryden HL (1943) Review of statistical theory of turbulence. Quarter Appl Math 1:7–42

    Article  MathSciNet  MATH  Google Scholar 

  34. Dunne A (2012) Aerodynamic optimisation of Aegis UAV. Master’s thesis, Cranfield University, School of Engineering, Cranfield, Bedfordshire, United Kingdom, pp 1–129

    Google Scholar 

  35. Durbin PA, Pettersson Reif BA (2011) Statistical theory and modeling for turbulent flows, 2nd edn. West Sussex, United Kingdom, John Wiley and Sons Ltd. ISBN 978-0-470-68931-8

    Google Scholar 

  36. Einstein A (1997) The collected papers of Albert Einstein. Volume 6. The Berlin Years: Writings, 1914–1917. English Translation of Selected Text. DOC. 30, Princeton University Press, New Jersey 08540, USA, chap The Foundation of the General Theory of Relativity, p 158

    Google Scholar 

  37. Eisfeild B, Brodersen O (2005) Advanced turbulence modelling and stress analysis for the DLR-F6 configuration. In: 23rd AIAA applied aerodynamics conference, fluid dynamics and co-located conferences, vol 2005–4727, pp 1–14. https://doi.org/10.2514/6.2005-4727

  38. Gatski TB, Speziale CG (1993) On explicit algebraic stress models for complex turbulent flows. J Fluid Mech 254:59–78

    Article  MathSciNet  MATH  Google Scholar 

  39. Gibson MM, Launder BE (1978) Ground effects on pressure fluctuations in the atmospheric boundary layer. J Fluid Mech 86:491–511

    Article  MATH  Google Scholar 

  40. Goldstein S (1937) The similarity theory of turbulence, and flow between parallel planes and through pipes. Proc R Soc Lond A 159:473–496

    Article  MATH  Google Scholar 

  41. Goldstein S (1938) Modern developments in fluid dynamics, volume I. Oxford at the Clarendon Press, Oxford

    Google Scholar 

  42. Goldstein S (1938) Modern developments in fluid dynamics, volume II. Oxford at the Clarendon Press, Oxford, pp 331–400

    Google Scholar 

  43. Grabe C, Nie S, Krumbein A (2016) Transition transport modeling for the prediction of crossflow transition. In: 34th AIAA applied aerodynamics conference, AIAA aviation forum (AIAA 2016–3572), pp 1–27

    Google Scholar 

  44. Hanjalić K, Jakirlić S (2002) Closure strategies for turbulent and transitional flows. Cambridge University Press, Cambridge, pp 47–101. ISBN 10: 0521792088, chap Second-Moment Turbulence Closure Modelling

    Google Scholar 

  45. Hanjalić K, Launder BE (1972) A Reynolds stress model of turbulence and its application to thin shear flows. J Fluid Mech 52(Part 4):609–638

    Article  MATH  Google Scholar 

  46. Hanjalić K, Launder BE (1976) Contribution towards a Reynolds-stress closure for low-Reynolds-number turbulence. J Fluid Mech 74(Part 4):593–610

    Article  MATH  Google Scholar 

  47. Heisenberg W (1948) Zur statistischen Theorie der Turbulenz. Z Phys 124(7–12):628–657

    Article  MathSciNet  MATH  Google Scholar 

  48. Hellsten A (1998) Some improvements in Menter’s k-omega SST turbulence model. AIAA paper 98–2554:1–11

    Google Scholar 

  49. Hinze JO (1959) Turbulence. An introduction to its mechanism and theory. McGraw-Hill Book Company, Inc., New York

    Google Scholar 

  50. Hunt JCR (2011) Turbulence structure and vortex dynamics. Cambridge University Press: New York, USA, First Paperback Edition, ISBN 978-0-521-17512-8, chap Dynamics and Statistics of Vertical Eddies in Turbulence, pp 192–243

    Google Scholar 

  51. Jakirlić S, Hanjalić K (2002) A new approach to modelling near-wall turbulence energy and stress dissipation. J Fluid Mech 459:139–166

    Article  MATH  Google Scholar 

  52. Janiga G (2002) Computation of two-dimensional turbulent shear flows in straight and curved channels (in Hungarian). PhD thesis, University of Miskolc, Faculty of Mechanical Engineering and Informatics, István Sályi Ph.D. School of Engineering Sciences, Department of Fluid and Heat Engineering, H-3515 Miskolc-Egyetemváros, Miskolc, Hungary, pp 1–77

    Google Scholar 

  53. Janiga G (2003) Computation of turbulent flow in an S-shaped channel. J Comput Appl Mech 4(2):147–158

    Google Scholar 

  54. Janiga G (2003) Implementation of a stochastic turbulence model in FLUENT, conference on modelling fluid flow (CMFF’2003). The 12th international conference on fluid flow technologies, Budapest, Hungary, Presentation

    Google Scholar 

  55. Janiga G, Szabó S, Farkas A, Kecke H, Praetor R, Wunderlich B (2001) Untersuchung der turbulenten ebenen Strmung in einem gekrmmten Kanal. In: microCAD’2001, International computer science conference, University of Miskolc, Miskolc, Hungary, Section N, pp 33–40

    Google Scholar 

  56. Janiga G, Szabó S, Farkas A, Szabó A (2001) Development of a measuring device and probes for measuring turbulent velocity profiles. In: Proceedings of third conference on mechanical engineering, Budapest, Springer Hungarica, pp 1–5

    Google Scholar 

  57. Jones WP, Launder BE (1973) The calculation of low-Reynolds-number-phenomena with a two-equation model of turbulence. Int J Heat Mass Transf 16:1119–1130

    Article  Google Scholar 

  58. Kalmár L (2010) Numerical investigation of fully-developed turbulent flows in two-dimensional channel by stochastic turbulent model. In: 3rd WSEAS international conference on engineering mechanics, structures, engineering geology (EMESEG’10). Latest trends on engineering mechanics, structures, engineering geology, pp 331–336. ISBN 978-960-474-203-5

    Google Scholar 

  59. Kalmár L, Czibere T, Janiga G (2008) Investigation of the model parameters of a stochastic two-equation turbulence model. In: microCAD’2008, international computer science conference, University of Miskolc, Miskolc, Hungary, Section E, pp 27–36

    Google Scholar 

  60. Karamcheti K (1967) Vector analysis and cartesian tensors with selected applications. Holden-Day, San Francisco, California, USA

    MATH  Google Scholar 

  61. von Kármán T (1930) Mechanische Ähnlichkeit und Turbulenz. Nachrichten von der Gesellschaft der Wissenschaften zu Gttingen Mathematisch-Physikalische Klasse, pp 58–76

    Google Scholar 

  62. von Kármán T (1930) Mechanische Ähnlichkeit und Turbulenz. In: Proceedings of the third international congress of applied mechanics, P. A. Norstedt & Sner, Stockholm

    Google Scholar 

  63. von Kármán T (1931) Mechanical similitude and turbulence. National advisory committee for aeronautics (NACA) technical memorandum No 611, Washington, USA; English Translation by Vanier, J pp 1–21

    Google Scholar 

  64. von Kármán T (1934) Some aspects of the turbulence problem. In: Proceedings of the fourth international congress of applied mechanics, Cambridge, pp 54–91

    Google Scholar 

  65. von Kármán T (1934) Turbulence and skin friction. Jour Aero Sci 1(1):1–20

    Google Scholar 

  66. von Kármán T (1937) On the statistical theory of turbulence. Proc Nat Acad Sci 23:98–105

    Google Scholar 

  67. von Kármán T (1937) The fundamentals of the statistical theory of turbulence. J Aero Sci 4:131–138

    Article  MATH  Google Scholar 

  68. von Kármán T (1956) Collected works of theodore von Kármán, volume II. 1914–1932, Butterworths Scientific Publications, London, chap Mechanische Ähnlichkeit und Turbulenz, pp 322–336

    Google Scholar 

  69. von Kármán T (1956) Collected Works of Theodore von Kármán, volume II. 1914–1932, Butterworths Scientific Publications: London, United Kingdom, chap Mechanische Ähnlichkeit und Turbulenz, pp 337–346

    Google Scholar 

  70. von Kármán T (1956) Collected works of theodore von Kármán, volume III. 1933–1939, Butterworths Scientific Publications: London, United Kingdom, chap Turbulence, pp 245–279

    Google Scholar 

  71. von Kármán T, Howarth L (1938) On the statistical theory of isotropic turbulence. Proc R Soc Lond A 164:192–215

    Article  MATH  Google Scholar 

  72. von Kármán T, Lin CC (1949) On the concept of similarity in the theory of isotropic turbulence. Rev Modern Phys 21(3):516–519

    Article  MathSciNet  MATH  Google Scholar 

  73. Klajbár C, Könözsy L, Jenkins KW (2016) A modified SSG/LLR-\(\omega \) Reynolds stress model for predicting bluff body aerodynamics. In: Papadrakakis M, Papadopoulos V, Stefanou G, Plevris V (eds) VII European congress on computer methods in application science and engineering ECCOMAS congress, pp 936–948

    Google Scholar 

  74. Kolmogorov A (1941) Local structure of turbulence in incompressible viscous fluid for very large Reynolds number. Doklady Akademija Nauk, SSSR 30:299–303

    Google Scholar 

  75. Kolmogorov A (1942) The equations of turbulent motion in an incompressible fluid. Izv Sci USSR Phys 6:56–58

    Google Scholar 

  76. Kolmogorov AN (1962) Refinement of previous hypothesis concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number. J Fluid Mech 12:82–85

    Article  MathSciNet  MATH  Google Scholar 

  77. Könözsy L (2003) A new mesh generation method for meridional section of turbomachinery. In: Proceedings of the international conference of water service science (ICWSS-2003), Brno-Ubislav, Czech Republic, pp 49–56

    Google Scholar 

  78. Könözsy L (2003) Comparison of the analytical and numerical solution of fully-developed turbulent pipe flow. In: Proceedings of the fourth international conference of Ph.D. Students, Miskolc, Hungary, vol II, pp 147–152

    Google Scholar 

  79. Könözsy L (2003) Fully-developed turbulent pipe flow based on the vorticity transport. In: Proceedings of the international conference of water service science (ICWSS-2003), Brno-Ubislav, Czech Republic, pp 57–65

    Google Scholar 

  80. Könözsy L (2003) Numerical computation of fully-developed turbulent channel flow based on the streamfunction-vorticity formulation. Acta Mechanica Slovaca, Koice, Slovakia 3:449–454

    Google Scholar 

  81. Könözsy L (2003) Numerical computation of fully-developed turbulent pipe flow based on the streamfunction-vorticity formulation. In: Proceedings of the twelfth international conference on fluid flow technology (CMFF-2003), Budapest, Hungary, pp 638–645

    Google Scholar 

  82. Könözsy L (2003) Orthogonal Curvilinear Coordinate Grid Generation (in Hungarian). GÉP J Budapest, Hungary LIV(1):38–39

    Google Scholar 

  83. Könözsy L (2004) Computation of two-dimensional shear flows with the solution of the turbulent vorticity transport equation (in Hungarian). PhD thesis, University of Miskolc, Faculty of Mechanical Engineering and Informatics, István Sályi PhD School of Engineering Sciences, Department of Fluid and Heat Engineering, H-3515 Miskolc-Egyetemváros, Miskolc, Hungary, pp 1–84

    Google Scholar 

  84. Langtry RB (2006) A correlation-based transition model using local variables for unstructured parallelized CFD codes. PhD thesis, University of Stuttgart, Stuttgart, Germany. http://elib.uni-stuttgart.de/opus/volltexte/2006/2801/

  85. Langtry RB, Menter FR (2009) Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes. AIAA J 47(12):2894–2906

    Article  Google Scholar 

  86. Launder BE, Spalding DB (1974) The numerical computation of turbulent flows. Comput Methods Appl Mech Eng 3:269–289

    Article  MATH  Google Scholar 

  87. Launder BE, Reece GJ, Rodi W (1975) Progress in the development of a Reynolds-stress turbulence closure. J Fluid Mech 68(Part 3):537–566

    Article  MATH  Google Scholar 

  88. Leschziner M (2016) Statistical turbulence modelling for fluid dynamics–Demystified. Imperial College Press, London, United Kingdom

    MATH  Google Scholar 

  89. Leslie DC (1973) Development in the theory of turbulence. Clarendon Press, Oxford, United Kingdom. ISBN 0-19-856-318-3

    Google Scholar 

  90. Lin CC, Shen SF (1951) Studies of von Kármán similarity theory and its extension to compressible flows. A critical examination of similarity theory for incompressible flows. National Advisory Committee for Aeronautics (NACA) Technical Note 2541, Washington, USA, pp 1–24

    Google Scholar 

  91. Lin CC, Shen SF (1951) Studies of von Kármán Similarity theory and its extension to compressible flows. A similarity theory for turbulent boundary layer over a flat plate in compressible flow. National Advisory Committee for Aeronautics (NACA) Technical Note 2542, Washington, USA, pp 1–38

    Google Scholar 

  92. Lin CC, Shen SF (1951) Studies of von Kármán similarity theory and its extension to compressible flows. Investigation of turbulent boundary layer over a flat plate in compressible flow by the similarity theory. National Advisory Committee for Aeronautics (NACA) Technical Note 2543, Washington, USA, pp 1–43

    Google Scholar 

  93. Liu K, Pletcher RH (2008) Anisotropy of a turbulent boundary layer. J Turbul 9(18):1–18

    Google Scholar 

  94. Lumley JL (2007) Stochastic tools in turbulence. Dover Publications Inc., Mineola, New York, USA

    MATH  Google Scholar 

  95. Mani M, Ladd JA, Bower WW (2004) Rotation and curvature correction assessment for one- and two-equation turbulence models. J Aircr 41(2):268–273

    Article  Google Scholar 

  96. McComb WD (2014) Homogeneous, isotropic tubrulence. Phenomenology, renormalization, and statistical closures. Oxford University Press: Oxford, United Kingdom, ISBN 978-0-19-968938-5

    Google Scholar 

  97. Menter FR (1992) Improved two-equation \(k\)-\(\omega \) turbulence models for aerodynamic flows. NASA Technical Memorandum 103975:1–31

    Google Scholar 

  98. Menter FR (1994) Improved two-equation Eddy-viscosity turbulence models for engineering applications. AIAA J 32(8):1598–1605

    Article  Google Scholar 

  99. Menter FR, Egorov Y (2005) A scale-adaptive simulation model using two-equation models. In: 43rd AIAA aerospace sciences meeting and exhibit, Reno, Nevada, vol 2005–1095, pp 1–13

    Google Scholar 

  100. Menter FR, Langtry R, Völker S (2006) Transition modelling for general purpose CFD codes. Flow Turbul Combust 77(1):203–277

    MATH  Google Scholar 

  101. Monin AS, Yaglom AM (2007) Statistical fluid mechanics. Mechanics of Turbulence, volume I, English edn. Mineola, New York, USA, Dover Publications Inc

    Google Scholar 

  102. Monin AS, Yaglom AM (2007) Statistical fluid mechanics. Mechanics of turbulence, volume II, English edn. Mineola, New York, USA, Dover Publications Inc

    Google Scholar 

  103. Novikov EA (2011) Turbulence structure and vortex dynamics, Cambridge University Press: New York, USA, First Paperback Edition, ISBN 978-0-521-17512-8, chap Vortical Structure and Modeling of Turbulence, pp 140–143

    Google Scholar 

  104. Oberlack M (1997) Non-Isotropic dissipation in non-homogeneous turbulence. J Fluid Mech 350:351–374

    Article  MathSciNet  MATH  Google Scholar 

  105. Pope SB (1975) A more general effective-viscosity hypothesis. J Fluid Mech 72(Part 2):331–340

    Article  MATH  Google Scholar 

  106. Pope SB (2000) Turbulent flows. Cambridge University Press, Cambridge, United Kingdom. ISBN 978-0-521-59886-6

    Google Scholar 

  107. Prandtl L (1925) Über die ausgebildete Turbulenz. ZAMM 5:136–139

    Article  MATH  Google Scholar 

  108. Reynolds O (1895) On the dynamical theory of incompressible viscous fluids and the determination of the criterion. Phil Trans R Soc Lond A 123:142–149

    Google Scholar 

  109. Rotta J (1951) Statistische Theorie nichthomogener Turbulenz. Z Phys 129(6):547–572

    MathSciNet  Google Scholar 

  110. Schlichting H (1982) Boundary layer theory. McGraw-Hill: New York, USA , pp. 32–58

    Google Scholar 

  111. Shih-I P (1957) Viscous flow theory II—turbulent flow. D. Van Nostrand Company, Inc.: New York, USA

    Google Scholar 

  112. Smirnov PE, Menter FR (2009) Sensitization of the SST turbulence model to rotation and curvature by applying the Spalart-Shur correction term. ASME J Turbomach 131(041010)

    Article  Google Scholar 

  113. Smith CR, Walker JDA (1995) Fluid vortices, Kluwer Academic Publishers: Dordrecht, The Netherlands, ISBN 0-7923-3376-4, chap Chapter VI. Turbulent Wall-Layer Vortices, pp 235–290

    Google Scholar 

  114. Spalart PR, Rumsey CL (2007) Effective inflow conditions for turbulence models in aerodynamic calculations. AIAA J 45(10):2544–2553

    Article  Google Scholar 

  115. Speziale CG (1987) On nonlinear K-\(l\) and K-\(\epsilon \) models of turbulence. J Fluid Mech 178:459–475

    Article  MATH  Google Scholar 

  116. Speziale CG (1989) Discussion of turbulence modeling: past and future. NASA Contractor Report 181884 ICASE Report No 89-58 pp 1–23

    Google Scholar 

  117. Speziale CG (1991) Analytical methods for the development of Reynolds-stress closures in turbulence. Annu Rev Fluid Mech 23:107–157

    Article  MathSciNet  MATH  Google Scholar 

  118. Speziale CG, Gatski TB (1997) Analysis and modelling of anisotropies in the dissipation rate of turbulence. J Fluid Mech 344:155–180

    Article  MathSciNet  MATH  Google Scholar 

  119. Speziale CG, Sarkar S, Gatski TB (1990) Modelling the pressure-strain correlation of turbulence–an invariant dynamical systems approach. NASA Contractor Report 181979 ICASE Report 90-5

    Google Scholar 

  120. Szabó S, Kecke HJ (2000) Untersuchung der Messungsmglichkeiten der Geschwindigkeitsverteilung innerhalb eines Koaxialen Kanals mittels LDV-Methoden. In: microCAD’2000, International computer science conference, University of Miskolc, Miskolc, Hungary, Section M, pp 145–150

    Google Scholar 

  121. Szabó S, Kecke HJ (2001) Experimentelle Bestimmung der Geschwindigkeitsverteilung in einem strmungsmaschinen-typischen Kanal mittels Laser-Doppler-Velocimetrie (LDV). Technisches Messen 68:131–139

    Article  Google Scholar 

  122. Szabó S, Juhász A, Farkas A, Janiga G (1999) Determination the velocity distribution with high accuracy. In: 11th conference on fluid and heat machinery and equipment, Budapest, CD-ROM, pp 1–3

    Google Scholar 

  123. Taylor GI (1915) Eddy motion in the atmosphere. Proc R Soc Lond A 215:1–26

    Google Scholar 

  124. Taylor GI (1932) The transport of vorticity and heat through fluids in turbulent motion. Proc Roy Soc A 135:685–701

    Article  MATH  Google Scholar 

  125. Taylor GI (1935) Statistical theory of turbulence. II. Proc R Soc Lond A 151:444–454

    Google Scholar 

  126. Taylor GI (1935) Statistical theory of turbulence. III. Distribution of dissipation of energy in a pipe over its cross-section. Proc R Soc Lond A 151:455–464

    Article  Google Scholar 

  127. Taylor GI (1935) Statistical theory of turbulence. iv. diffusion in a turbulent air stream. Proc R Soc Lond A 151:465–478

    Article  Google Scholar 

  128. Taylor GI (1935) Statistical theory of turbulence. Parts I–IV. Proc R Soc Lond A 151:421–444

    Article  MATH  Google Scholar 

  129. Taylor GI (1936) Statistical theory of turbulence. V. effect of turbulence on boundary layer theoretical discussion of relationship between scale of turbulence and critical resistance of spheres. Proc R Soc Lond A 156:307–317

    Article  MATH  Google Scholar 

  130. Taylor GI (1937) The statistical theory of turbulence. J Aero Sci 4(8):311–315

    Article  MATH  Google Scholar 

  131. Taylor GI (1938) Production and dissipation of vorticity in a turbulent fluid. Proc R Soc Lond A 164(916):15–23

    Google Scholar 

  132. Taylor GI (1938) The spectrum of turbulence. Proc R Soc Lond A 164:476–490

    Article  MATH  Google Scholar 

  133. Tennekes H, Lumley JL (1972) A first course in turbulence. The MIT Press: Cambridge, Massachusetts, USA, ISBN 978-0-262-20019-6, chap Vorticity Dynamics, pp 75–94

    Google Scholar 

  134. Townsend AA (1956) The structure of turbulent shear flow. Cambridge at the University Press, Cambridge, Great Britain

    MATH  Google Scholar 

  135. Vitillo F, Galati C, Cachona L, Laroche E, Millan P (2015) An anisotropic shear stress transport (ASST) model formulation. Comput Math Appl 70:2238–2251

    Article  MathSciNet  Google Scholar 

  136. Wilcox DC (1988) The reassessment of the scale-determining equation for advanced turbulence models. AIAA J 26:1299–1310

    Article  MathSciNet  MATH  Google Scholar 

  137. Wilcox DC (1993) Turbulence modeling for CFD. DCW Industries Inc., Glendale, California, USA, First Ed. ISBN 0-9636051-0-0

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to László Könözsy .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Könözsy, L. (2019). Introduction. In: A New Hypothesis on the Anisotropic Reynolds Stress Tensor for Turbulent Flows. Fluid Mechanics and Its Applications, vol 120. Springer, Cham. https://doi.org/10.1007/978-3-030-13543-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-13543-0_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-13542-3

  • Online ISBN: 978-3-030-13543-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics