Skip to main content

A Multi-resolution Approach to the Simulation of Protein Complexes in a Membrane Bilayer

  • Conference paper
  • First Online:
High Performance Computing in Science and Engineering ' 18

Abstract

We describe a transferable multiresolution computational approach to build and simulate complexes of two proteins—cytochrome P450 (CYP) and CYP reductase (CPR)—in a membrane bilayer using Brownian dynamics (BD) and all-atom molecular dynamics (MD) simulations. Our benchmarks showed that MD simulations of these systems could be carried out efficiently with up to 180 nodes (4320 cores) using NAMD version 2.12. Our results provide a basis for defining the ensemble of electron transfer-competent arrangements of CYP-CPR-membrane complexes and for understanding differences in the interactions with CPR of different CYPs, which have implications for CYP-mediated drug metabolism and the exploitation of CYPs as drug targets. This work was carried out in the DYNATHOR (DYNAmics of THe complex of cytOchrome P450 and cytochrome P450 Reductase in a phospholipid bilayer) project at HLRS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Kirchmair, A.H. Göller, D. Lang, et al., Predicting drug metabolism: experiment and/or computation? Nat. Rev. Drug Discov. 14, 387–404 (2015)

    Article  Google Scholar 

  2. J. Kirchmair, A. Howlett, J.E. Peironcely, et al., How do metabolites differ from their parent molecules and how are they excreted? J. Chem. Inf. Model. 53, 354–367 (2013)

    Article  Google Scholar 

  3. L. Olsen, C. Oostenbrink, F.S. Jørgensen, Prediction of cytochrome P450 mediated metabolism. Adv. Drug Deliv. Rev. 86, 61–71 (2015)

    Article  Google Scholar 

  4. V.P. Androutsopoulos, A.M. Tsatsakis, D.A. Spandidos, Cytochrome P450 CYP1A1: wider roles in cancer progression and prevention. BMC Cancer 9, 187 (2009)

    Article  Google Scholar 

  5. R.D. Bruno, V.C.O. Njar, Targeting cytochrome P450 enzymes: a new approach in anti-cancer drug development. Metab. Clin. Exp. 15, 5047–5060 (2007)

    Google Scholar 

  6. F.P. Guengerich, Mechanisms of cytochrome P450 substrate oxidation: MiniReview. J. Biochem. Mol. Toxicol. 21, 163–168 (2007)

    Article  Google Scholar 

  7. I.F. Sevrioukova, H. Li, H. Zhang et al., Structure of a cytochrome P450-redox partner electron-transfer complex. Proc. Natl. Acad. Sci. USA 96, 1863–1868 (1999)

    Article  Google Scholar 

  8. K.K. Dubey, S. Shaik, Choreography of the reductase and P450BM3 domains toward electron transfer is instigated by the substrate. J. Am. Chem. Soc. 140, 683–690 (2018)

    Article  Google Scholar 

  9. A. Sündermann, C. Oostenbrink, Molecular dynamics simulations give insight into the conformational change, complex formation, and electron transfer pathway for cytochrome P450 reductase. Protein Sci. 22, 1183–1195 (2013)

    Article  Google Scholar 

  10. D.F. Estrada, A.L. Skinner, J.S. Laurence, E.E. Scott, Human cytochrome P450 17A1 conformational selection: modulation by ligand and cytochrome b5. J. Biol. Chem. 289, 14310–14320 (2014)

    Article  Google Scholar 

  11. S. Ahuja, N. Jahr, S.-C. Im et al., A model of the membrane-bound cytochrome b5-cytochrome P450 complex from NMR and mutagenesis data. J. Biol. Chem. 288, 22080–22095 (2013)

    Article  Google Scholar 

  12. K. Yamamoto, U.H.N. Dürr, J. Xu et al., Dynamic interaction between membrane-bound full-length cytochrome P450 and cytochrome b5 observed by solid-state NMR spectroscopy. Sci. Rep. 3, 2538 (2013)

    Article  Google Scholar 

  13. R. Huang, K. Yamamoto, M. Zhang et al., Probing the transmembrane structure and dynamics of microsomal NADPH-cytochrome P450 oxidoreductase by solid-state NMR. Biophys. J. 106, 2126–2133 (2014)

    Article  Google Scholar 

  14. P. Jevrábek, J. Florián, V. Mart’inek, Lipid molecules can induce an opening of membrane-facing tunnels in cytochrome P450 1A2. Phys. Chem. Chem. Phys. 18, 30344–30356 (2016)

    Article  Google Scholar 

  15. V. Cojocaru, K. Balali-Mood, M.S.P. Sansom, R.C. Wade, Structure and dynamics of the membrane-bound cytochrome P450 2C9. PLoS Comput. Biol. 7, e1002152 (2011)

    Article  Google Scholar 

  16. G. Mustafa, P.P. Nandekar, X. Yu, R.C. Wade, On the application of the MARTINI coarse-grained model to immersion of a protein in a phospholipid bilayer. J. Chem. Phys. 143, 243139 (2015)

    Article  Google Scholar 

  17. X. Yu, D.B. Kokh, P. Nandekar, G. Mustafa, S. Richter, R.C. Wade, Dynathor: dynamics of the complex of cytochrome P450 and cytochrome P450 reductase in a phospholipid bilayer, in High performance computing in science and engineering ´15, ed. by W. Nagel, D. Kröner, M. Resch. (Springer, Cham, 2016)

    Chapter  Google Scholar 

  18. X. Yu, P. Nandekar, G. Mustafa, V. Cojocaru, G.I. Lepesheva, R.C. Wade, Ligand tunnels in T. brucei and human CYP51: insights for parasite-specific drug design. BBA-Gen. Sub. 1860, 67–78 (2016)

    Article  Google Scholar 

  19. G. Mustafa, P.P. Nandekar, T.J. Camp, N.J. Bruce, M.C. Gregory, S.G. Sligar, R.C. Wade, Influence of transmembrane helix mutations on cytochrome P450-membrane interactions and function. Biophys. J. 143, 419–432 (2019)

    Article  Google Scholar 

  20. H.M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T.N. Bhat, H. Weissig, I.N. Shindyalov, P.E. Bourne, The Protein Data Bank. Nuc. Acids Res. 28, 235–242 (2000)

    Article  Google Scholar 

  21. R.R. Gabdoulline, R.C. Wade, Simulation of the diffusional association of barnase and barstar. Biophys. J. 72, 1917–1929 (1997)

    Article  Google Scholar 

  22. R.R. Gabdoulline, R.C. Wade, Brownian dynamics simulation of protein-protein diffusional encounter. Methods 3, 329–341 (1998)

    Article  Google Scholar 

  23. M. Martinez, N.J. Bruce, J. Romanowska, D.B. Kokh, M. Ozboyaci, X. Yu, M.A. Öztürk, S. Richter, R.C. Wade, SDA7: a modular and parallel implementation of the simulation of diffusional association software. J. Comput. Chem. 36, 1631–1645 (2015)

    Article  Google Scholar 

  24. A.W. Munro, et. al., P450 BM3: the very model of a modern flavocytochrome. Trends Biochem. Sci. 27, 250–257 (2002)

    Article  Google Scholar 

  25. I.A. Balabin, X. Hu, D.N. Beratan, Exploring biological electron transfer pathway dynamics with the pathways plugin for VMD. J. Comput. Chem. 33, 906–910 (2012)

    Article  Google Scholar 

  26. A. Das, Y.V. Grinkova, S.G. Sligar, Redox potential control by drug binding to cytochrome P450 3A4. J. Am. Chem. Soc. 129, 13778–13779 (2007)

    Article  Google Scholar 

  27. A. Das, S.G. Sligar, Modulation of the cytochrome P450 reductase redox potential by the phospholipid bilayer. Biochemistry 48, 12104–12112 (2009)

    Article  Google Scholar 

  28. C.C. Page, C.C. Moser, X. Chen, P.L. Dutton, Natural engineering principles of electron tunnelling in biological oxidation-reduction. Nature 402, 47–52 (1999)

    Article  Google Scholar 

  29. H. Zhang, S.-C. Im, L. Waskell, Cytochrome b5 increases the rate of product formation by cytochrome P450 2B4 and competes with cytochrome P450 reductase for a binding site on cytochrome P450 2B4. J. Biol. Chem. 282, 29766–29776 (2007)

    Article  Google Scholar 

  30. F.P. Guengerich, W.W. Johnson, Kinetics of ferric cytochrome P450 reduction by NADPH—cytochrome P450 reductase: rapid reduction in the absence of substrate and variations among cytochrome P450 systems. Biochem. 36, 14741–14750 (1997)

    Article  Google Scholar 

  31. Y. Farooq, G.C.K. Roberts, Kinetics of electron transfer between NADPH-cytochrome P450 reductase and cytochrome P450 3A4. Biochem. J. 432, 485–494 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support of the Klaus-Tschira Foundation, Heidelberg University Frontiers Innovation Fund, the BIOMS Center for Modelling and Simulation in the Biosciences (Go.M.), and the German Academic Exchange Service (Gh.M., P.N.). Finally, we thank HLRS for providing computing time for the DYNATHOR project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebecca C. Wade .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mukherjee, G., Nandekar, P., Mustafa, G., Richter, S., Wade, R.C. (2019). A Multi-resolution Approach to the Simulation of Protein Complexes in a Membrane Bilayer. In: Nagel, W., Kröner, D., Resch, M. (eds) High Performance Computing in Science and Engineering ' 18. Springer, Cham. https://doi.org/10.1007/978-3-030-13325-2_32

Download citation

Publish with us

Policies and ethics