Skip to main content

Development of the Structure of an Automated Control System Using Tensor Techniques for a Diffusion Station

  • Conference paper
  • First Online:

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 920))

Abstract

In modern automation systems, when creating of the regulating action the predicted values obtained from mathematical models are used and so, as a consequence, the efficiency of the enterprise will depend on the developed mathematical model adequacy. If the mathematical model is formulated in a tensorial form, then the prerequisite is created for the model to describe the process in an adequate manner. In this paper, we give an example of the development of a tensor model for a sugar house juice extraction complex and its use on the example of a structural diagram of an operating system. This structural diagram of the operating system consists of six main components. At the first stage the radius vectors (input and regulated values) are formed. At the second and third stage tensors are calculated. That will mathematically describe the connection between the input and output parameters of the operating system. At the fourth step, an unbalance signal in local coordinates and the controller coefficients is calculated. At the fifth and sixth steps, values of control signals in local coordinates are calculated. This approach allows us to calculate a regulating action to improve all the performance indicators of the technological site.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Pushanko, M.M., Verkhola, L.A.: Ekstraktsiia tsukru z buriakiv: mozhlyvosti naiavnoho obladnannia. Tsukor Ukrainy, No. 11. pp. 33–41 (2011)

    Google Scholar 

  2. Korobiichuk, I., Lutskaya, N., Ladanyuk, A., Naku, S., Kachniarz, M., Nowicki, M., Szewczyk, R.: Synthesis of optimal robust regulator for food processing facilities. Adv. Intell. Syst. Comput. 550, 58–66 (2017). https://doi.org/10.1007/978-3-319-54042-9_5

    Article  Google Scholar 

  3. Boiko, V.O., Maslikov, M.O., Priadko, M.O.: Vyznachennia kontsentratsii i temperatury dyfuziinoho soku. Naukovi pratsi Natsionalnoho universytetu kharchovykh tekhnolohii. 18, 86–89 (2006)

    Google Scholar 

  4. Korobiichuk, I., Ladanyuk, A., Shumyhai, D., Boyko, R., Reshetiuk, V., Kamiński, M.: How to increase efficiency of automatic control of complex plants by development and implementation of coordination control system. Adv. Intell. Syst. Comput. 543, 189–195 (2017). https://doi.org/10.1007/978-3-319-48923-0_23

    Article  Google Scholar 

  5. Sidletskyi, V.M.: Vdoskonalennia avtomatyzovanoi systemy keruvannia tekhnolohich-nym protsesom pidpryiemstva kharchovoi promyslovosti. Problemy ta perspektyvy rozvytku enerhetyky, elektrotekhnolohii ta avtomatyky v APK: IV Mizhnarodna naukovo-praktychna konferentsiia, 21–22 lystopada 2016 r, NUBIP, Kyiv, pp. 71–72 (2016)

    Google Scholar 

  6. Korobiichuk, I., Dobrzhansky, O., Kachniarz, M.: Remote control of nonlinear motion for mechatronic machine by means of CoDeSys compatible industrial controller. Tehnički vjesnik/Technical Gazette 24(6), 1661–1667 (2017). https://doi.org/10.17559/TV-20151110164217

    Article  Google Scholar 

  7. Petrushka, V.P., Buryy, N.A., Seregin, A.A., Lyulka, D.N.: Avtomatizatsiya i opyt ekspluatatsii diffuzionnoy ustanovki EKA-3. Sakhar, No. 1, p. 52 (2005)

    Google Scholar 

  8. Kharlamenko, V., Ruban, S., Korobiichuk, I., Petruk, O.: Adaptive control of dynamic load in blooming mill with online estimation of process parameters based on the modified Kaczmarz Algorithm. Adv. Intell. Syst. Comput. 543, 227–233 (2017). https://doi.org/10.1007/978-3-319-48923-0_28

    Article  Google Scholar 

  9. Trehub, V.H., Yu, D.Y.: Avtomatyzatsiia potoku dyfuziinoho soku. Avtomatyzatsiia vyrobnychykh protsesiv, no. 1(14), 66–68 (2002)

    Google Scholar 

  10. Ladaniuk, A.P., Zaiets, N.A., Vlasenko, L.O.: Suchasni tekhnolohii konstruiuvannia system avtomatyzatsii skladnykh obiektiv (merezhevi struktury, adaptatsiia, diahnostyka ta prohnozuvannia): monohrafiia, Nats. un-t kharch. tekhn, Lira-K, Kyiv, 312 p. (2016). ISBN 978-617-7320-34-9

    Google Scholar 

  11. Korobiichuk, I., Ladanyuk, A., Zaiets, N., Vlasenko, L.: Modern development technologies and investigation of food production technological complex automated systems. In: ACM International Conference Proceeding Series, pp. 52–57 (2018). https://doi.org/10.1145/3185066.3185075

  12. Sidletskyi, V.M., Elperin, I.V., Polupan, V.V.: Analiz ne vymiriuvalnykh parametriv na rivni rozpodilenoho keruvannia dlia avtomatyzovanoi systemy, obiektiv i kompleksiv kharchovoi promyslovosti. Naukovi pratsi Natsionalnoho universytetu kharchovykh tekhnolohii 22(3), 7–15 (2016)

    Google Scholar 

  13. Korobiichuk, I., Siumachenko, D., Smityuh, Y., Shumyhai, D.: Research on automatic controllers for plants with significant delay. Adv. Intell. Syst. Comput. 519, 449–457 (2017). https://doi.org/10.1007/978-3-319-46490-9_60

    Article  Google Scholar 

  14. Varychev, A.I., Sidletsky, V.M.: Avtomatyzovana systema upravlinnia dyfuziinoiu stantsiieiu, yak skladovoiu kompiuterno-intehrovanoi systemy tsukrovoho zavodu, z vykorystanniam tezornoho analizu. Suchasni metody, informatsiine, prohramne ta tekhnichne zabezpechennia system keruvannia orhanizatsiino-tekhnichnymy ta tekhnolohichnymy kompleksamy: materialy IV mizhnarodnoi naukovo-tekhnichnoi Internet - konferentsii, 22 lystopada 2017 r., NUKhT, Kyiv, pp. 185–186 (2017)

    Google Scholar 

  15. Fletcher, P.T., Joshi, S.: Riemannian geometry for the statistical analysis of diffusion tensor data. Sig. Process. 87(2), 250–262 (2007). https://doi.org/10.1016/j.sigpro.2005.12.018

    Article  MATH  Google Scholar 

  16. Vasilescu, M.A., Terzopoulos, D.O.: Multilinear analysis of image ensembles: tensorfaces. In: Lecture Notes in Computer Science, pp. 447–460 (2002)

    Chapter  Google Scholar 

  17. Chen, J., Jia, B., Zhang, K.: Trifocal tensor-based adaptive visual trajectory tracking control of mobile robots. IEEE Trans. Cybern. 47(11), 3784–3798 (2017). https://doi.org/10.1109/TCYB.2016.2582210

    Article  Google Scholar 

  18. Strang, G.: The fundamental theorem of linear algebra. Am. Math. Mon. 100(9), 848–855 (1993)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Korobiichuk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sidletskyi, V., Korobiichuk, I., Ladaniuk, A., Elperin, I., Rzeplińska-Rykała, K. (2020). Development of the Structure of an Automated Control System Using Tensor Techniques for a Diffusion Station. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds) Automation 2019. AUTOMATION 2019. Advances in Intelligent Systems and Computing, vol 920. Springer, Cham. https://doi.org/10.1007/978-3-030-13273-6_18

Download citation

Publish with us

Policies and ethics