Skip to main content

Vascular Smooth Muscle Cells: Regulation of Vasoconstriction and Vasodilation

  • Chapter
  • First Online:
Fundamentals of Vascular Biology

Part of the book series: Learning Materials in Biosciences ((LMB))

  • 2094 Accesses

Abstract

In this chapter the diverse embryonic origin of vascular smooth muscle cell and their high degree of plasticity will be described. Emphasis will also be laid on the essential contribution of vascular smooth muscle cells to maintaining the structural integrity of blood vessels and to regulating vasodilation and vasoconstriction. In particular it will be discussed how intracellular cytosolic Ca2+ levels modulate contraction and relaxation of vascular smooth muscle cells and which modulators and intracellular pathways are involved in regulating these cytosolic Ca2+ levels. Finally the impact of dysfunctional vascular smooth muscle cells on the development of cardiovascular pathologies such as hypertension and atherosclerosis will be described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Willerson JT, Ridker PM. Inflammation as a cardiovascular risk factor. Circulation. 2004;109:II2–10.

    PubMed  Google Scholar 

  2. Torrado J, Buckley L, Duran A, Trujillo P, Toldo S, Valle Raleigh J, Abbate A, Biondi-Zoccai G, Guzman LA. Restenosis, stent thrombosis, and bleeding complications: navigating between scylla and charybdis. J Am Coll Cardiol. 2018;71:1676–95.

    Article  PubMed  Google Scholar 

  3. Wasteson P, Johansson BR, Jukkola T, Breuer S, Akyurek LM, Partanen J, Lindahl P. Developmental origin of smooth muscle cells in the descending aorta in mice. Development. 2008;135:1823–32.

    Article  CAS  PubMed  Google Scholar 

  4. Jiang X, Rowitch DH, Soriano P, McMahon AP, Sucov HM. Fate of the mammalian cardiac neural crest. Development. 2000;127:1607–16.

    CAS  PubMed  Google Scholar 

  5. Wang G, Jacquet L, Karamariti E, Xu Q. Origin and differentiation of vascular smooth muscle cells. J Physiol. 2015;593:3013–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Voiculescu O, Papanayotou C, Stern CD. Spatially and temporally controlled electroporation of early chick embryos. Nat Protoc. 2008;3:419–26.

    Article  CAS  PubMed  Google Scholar 

  7. Nakamura T, Colbert MC, Robbins J. Neural crest cells retain multipotential characteristics in the developing valves and label the cardiac conduction system. Circ Res. 2006;98:1547–54.

    Article  CAS  PubMed  Google Scholar 

  8. Pouget C, Gautier R, Teillet MA, Jaffredo T. Somite-derived cells replace ventral aortic hemangioblasts and provide aortic smooth muscle cells of the trunk. Development. 2006;133:1013–22.

    Article  CAS  PubMed  Google Scholar 

  9. Tian X, Hu T, Zhang H, He L, Huang X, Liu Q, Yu W, He L, Yang Z, Yan Y, Yang X, Zhong TP, Pu WT, Zhou B. Vessel formation. De novo formation of a distinct coronary vascular population in neonatal heart. Science. 2014;345:90–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Somlyo AP, Somlyo AV. Signal transduction and regulation in smooth muscle. Nature. 1994;372:231–6.

    Article  CAS  PubMed  Google Scholar 

  11. Akata T. Cellular and molecular mechanisms regulating vascular tone. Part 1: basic mechanisms controlling cytosolic Ca2+ concentration and the Ca2+-dependent regulation of vascular tone. J Anesth. 2007;21:220–31.

    Article  PubMed  Google Scholar 

  12. Hai CM, Murphy RA. Ca2+, crossbridge phosphorylation, and contraction. Annu Rev Physiol. 1989;51:285–98.

    Article  CAS  PubMed  Google Scholar 

  13. Khalil RA. Regulation of vascular smooth muscle function. San Rafael (CA): Morgan & Claypool Life Sciences; 2010.

    Book  Google Scholar 

  14. Marin J, Encabo A, Briones A, Garcia-Cohen EC, Alonso MJ. Mechanisms involved in the cellular calcium homeostasis in vascular smooth muscle: calcium pumps. Life Sci. 1999;64:279–303.

    Article  CAS  PubMed  Google Scholar 

  15. Gollasch M, Nelson MT. Voltage-dependent Ca2+ channels in arterial smooth muscle cells. Kidney Blood Press Res. 1997;20:355–71.

    Article  CAS  PubMed  Google Scholar 

  16. Hughes AD. Calcium channels in vascular smooth muscle cells. J Vasc Res. 1995;32:353–70.

    Article  CAS  PubMed  Google Scholar 

  17. McDonald TF, Pelzer S, Trautwein W, Pelzer DJ. Regulation and modulation of calcium channels in cardiac, skeletal, and smooth muscle cells. Physiol Rev. 1994;74:365–507.

    Article  CAS  PubMed  Google Scholar 

  18. Gibson A, McFadzean I, Wallace P, Wayman CP. Capacitative Ca2+ entry and the regulation of smooth muscle tone. Trends Pharmacol Sci. 1998;19:266–9.

    Article  CAS  PubMed  Google Scholar 

  19. Gonzalez JM, Jost LJ, Rouse D, Suki WN. Plasma membrane and sarcoplasmic reticulum Ca-ATPase and smooth muscle. Miner Electrolyte Metab. 1996;22:345–8.

    CAS  PubMed  Google Scholar 

  20. Grover AK, Khan I. Calcium pump isoforms: diversity, selectivity and plasticity. Review article. Cell Calcium. 1992;13:9–17.

    Article  CAS  PubMed  Google Scholar 

  21. Koyama M, Ito M, Feng J, Seko T, Shiraki K, Takase K, Hartshorne DJ, Nakano T. Phosphorylation of CPI-17, an inhibitory phosphoprotein of smooth muscle myosin phosphatase, by Rho-kinase. FEBS Lett. 2000;475:197–200.

    Article  CAS  PubMed  Google Scholar 

  22. Hartshorne DJ. Myosin phosphatase: subunits and interactions. Acta Physiol Scand. 1998;164:483–93.

    Article  CAS  PubMed  Google Scholar 

  23. Parmentier JH, Muthalif MM, Saeed AE, Malik KU. Phospholipase D activation by norepinephrine is mediated by 12(s)-, 15(s)-, and 20-hydroxyeicosatetraenoic acids generated by stimulation of cytosolic phospholipase a2. tyrosine phosphorylation of phospholipase d2 in response to norepinephrine. J Biol Chem. 2001;276:15704–11.

    Article  CAS  PubMed  Google Scholar 

  24. Horowitz A, Menice CB, Laporte R, Morgan KG. Mechanisms of smooth muscle contraction. Physiol Rev. 1996;76:967–1003.

    Article  CAS  PubMed  Google Scholar 

  25. Vaandrager AB, de Jonge HR. Signalling by cGMP-dependent protein kinases. Mol Cell Biochem. 1996;157:23–30.

    Article  CAS  PubMed  Google Scholar 

  26. Akata T. Cellular and molecular mechanisms regulating vascular tone. Part 2: regulatory mechanisms modulating Ca2+ mobilization and/or myofilament Ca2+ sensitivity in vascular smooth muscle cells. J Anesth. 2007;21:232–42.

    Article  PubMed  Google Scholar 

  27. Waldron GJ, Cole WC. Activation of vascular smooth muscle K+ channels by endothelium-derived relaxing factors. Clin Exp Pharmacol Physiol. 1999;26:180–4.

    Article  CAS  PubMed  Google Scholar 

  28. Yao X, Segal AS, Welling P, Zhang X, McNicholas CM, Engel D, Boulpaep EL, Desir GV. Primary structure and functional expression of a cGMP-gated potassium channel. Proc Natl Acad Sci U S A. 1995;92:11711–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Standen NB, Quayle JM. K+ channel modulation in arterial smooth muscle. Acta Physiol Scand. 1998;164:549–57.

    Article  CAS  PubMed  Google Scholar 

  30. Brayden JE. Potassium channels in vascular smooth muscle. Clin Exp Pharmacol Physiol. 1996;23:1069–76.

    Article  CAS  PubMed  Google Scholar 

  31. Sugiyama T, Yoshizumi M, Takaku F, Urabe H, Tsukakoshi M, Kasuya T, Yazaki Y. The elevation of the cytoplasmic calcium ions in vascular smooth muscle cells in SHR--measurement of the free calcium ions in single living cells by lasermicrofluorospectrometry. Biochem Biophys Res Commun. 1986;141:340–5.

    Article  CAS  PubMed  Google Scholar 

  32. Griendling KK, Rittenhouse SE, Brock TA, Ekstein LS, Gimbrone MA Jr, Alexander RW. Sustained diacylglycerol formation from inositol phospholipids in angiotensin II-stimulated vascular smooth muscle cells. J Biol Chem. 1986;261:5901–6.

    CAS  PubMed  Google Scholar 

  33. Takagi Y, Hirata Y, Takata S, Yoshimi H, Fukuda Y, Fujita T, Hidaka H. Effects of protein kinase inhibitors on growth factor-stimulated DNA synthesis in cultured rat vascular smooth muscle cells. Atherosclerosis. 1988;74:227–30.

    Article  CAS  PubMed  Google Scholar 

  34. Liou YM, Morgan KG. Redistribution of protein kinase C isoforms in association with vascular hypertrophy of rat aorta. Am J Phys. 1994;267:C980–9.

    Article  CAS  Google Scholar 

  35. Seko T, Ito M, Kureishi Y, Okamoto R, Moriki N, Onishi K, Isaka N, Hartshorne DJ, Nakano T. Activation of RhoA and inhibition of myosin phosphatase as important components in hypertension in vascular smooth muscle. Circ Res. 2003;92:411–8.

    Article  CAS  PubMed  Google Scholar 

  36. Uehata M, Ishizaki T, Satoh H, Ono T, Kawahara T, Morishita T, Tamakawa H, Yamagami K, Inui J, Maekawa M, Narumiya S. Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature. 1997;389:990–4.

    Article  CAS  PubMed  Google Scholar 

  37. Numaguchi K, Eguchi S, Yamakawa T, Motley ED, Inagami T. Mechanotransduction of rat aortic vascular smooth muscle cells requires RhoA and intact actin filaments. Circ Res. 1999;85:5–11.

    Article  CAS  PubMed  Google Scholar 

  38. Kataoka C, Egashira K, Inoue S, Takemoto M, Ni W, Koyanagi M, Kitamoto S, Usui M, Kaibuchi K, Shimokawa H, Takeshita A. Important role of Rho-kinase in the pathogenesis of cardiovascular inflammation and remodeling induced by long-term blockade of nitric oxide synthesis in rats. Hypertension. 2002;39:245–50.

    Article  CAS  PubMed  Google Scholar 

  39. Higashi M, Shimokawa H, Hattori T, Hiroki J, Mukai Y, Morikawa K, Ichiki T, Takahashi S, Takeshita A. Long-term inhibition of Rho-kinase suppresses angiotensin II-induced cardiovascular hypertrophy in rats in vivo: effect on endothelial NAD(P)H oxidase system. Circ Res. 2003;93:767–75.

    Article  CAS  PubMed  Google Scholar 

  40. Salmon M, Gomez D, Greene E, Shankman L, Owens GK. Cooperative binding of KLF4, pELK-1, and HDAC2 to a G/C repressor element in the SM22alpha promoter mediates transcriptional silencing during SMC phenotypic switching in vivo. Circ Res. 2012;111:685–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Herring BP, Hoggatt AM, Burlak C, Offermanns S. Previously differentiated medial vascular smooth muscle cells contribute to neointima formation following vascular injury. Vasc Cell. 2014;6:21.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Yoshida T, Kaestner KH, Owens GK. Conditional deletion of Kruppel-like factor 4 delays downregulation of smooth muscle cell differentiation markers but accelerates neointimal formation following vascular injury. Circ Res. 2008;102:1548–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Feil S, Fehrenbacher B, Lukowski R, Essmann F, Schulze-Osthoff K, Schaller M, Feil R. Transdifferentiation of vascular smooth muscle cells to macrophage-like cells during atherogenesis. Circ Res. 2014;115:662–7.

    Article  CAS  PubMed  Google Scholar 

  44. Chade AR, Zhu XY, Grande JP, Krier JD, Lerman A, Lerman LO. Simvastatin abates development of renal fibrosis in experimental renovascular disease. J Hypertens. 2008;26:1651–60.

    Article  CAS  PubMed  Google Scholar 

  45. Sata M, Saiura A, Kunisato A, Tojo A, Okada S, Tokuhisa T, Hirai H, Makuuchi M, Hirata Y, Nagai R. Hematopoietic stem cells differentiate into vascular cells that participate in the pathogenesis of atherosclerosis. Nat Med. 2002;8:403–9.

    Article  CAS  PubMed  Google Scholar 

  46. Sartore S, Chiavegato A, Faggin E, Franch R, Puato M, Ausoni S, Pauletto P. Contribution of adventitial fibroblasts to neointima formation and vascular remodeling: from innocent bystander to active participant. Circ Res. 2001;89:1111–21.

    Article  CAS  PubMed  Google Scholar 

  47. Zengin E, Chalajour F, Gehling UM, Ito WD, Treede H, Lauke H, Weil J, Reichenspurner H, Kilic N, Ergun S. Vascular wall resident progenitor cells: a source for postnatal vasculogenesis. Development. 2006;133:1543–51.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johann Wojta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wojta, J. (2019). Vascular Smooth Muscle Cells: Regulation of Vasoconstriction and Vasodilation. In: Geiger, M. (eds) Fundamentals of Vascular Biology. Learning Materials in Biosciences. Springer, Cham. https://doi.org/10.1007/978-3-030-12270-6_5

Download citation

Publish with us

Policies and ethics