Skip to main content

Integrated Approach for Characterization of Highly Heterogeneous Drugs

  • Chapter
  • First Online:
The Science and Regulations of Naturally Derived Complex Drugs

Part of the book series: AAPS Advances in the Pharmaceutical Sciences Series ((AAPS,volume 32))

  • 644 Accesses

Abstract

The transformative evolution of the life sciences field is at an important point of convergence with data sciences, which is another dramatically evolving field. The advances in rapid, sensitive, and high-throughput analytical methods and “big data ” approaches (deep sequencing, etc.) have led to an explosion of datasets in life sciences. This rapid accumulation of diverse data necessitates the development of scientific frameworks and concepts borrowing from the evolving data sciences field to make meaningful predictions and practical use of such data. An important practical application of this convergence is providing a scientific framework for regulatory guidance involving characterization of highly heterogeneous molecules that make up active pharmaceutical ingredients of complex drugs . This chapter provides a perspective on developing such a framework for characterization of highly heterogeneous drugs from the standpoint of demonstrating sameness or equivalence with a reference product. Using examples of recently approved generic versions of complex drugs , this chapter presents the concept of “test-points” (terminology used in design of integrated circuit boards) that capture critical relationships between structural attributes of the heterogeneous molecules, the process steps involved in generating the drug product, and the starting reagents or materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Oner ZG, et al. Equivalence and regulatory approaches of nonbiological complex drug products across the United States, the European Union, and Turkey. Ann N Y Acad Sci. 2017;1407(1):26–38.

    Article  Google Scholar 

  2. Berkowitz SA, et al. Analytical tools for characterizing biopharmaceuticals and the implications for biosimilars. Nat Rev Drug Discov. 2012;11(7):527–40.

    Article  CAS  Google Scholar 

  3. Ly M, et al. The proteoglycan bikunin has a defined sequence. Nat Chem Biol. 2011;7(11):827–33.

    Article  CAS  Google Scholar 

  4. Yu LX, et al. Understanding pharmaceutical quality by design. AAPS J. 2014;16(4):771–83.

    Article  CAS  Google Scholar 

  5. Kozlowski S, Swann P. Current and future issues in the manufacturing and development of monoclonal antibodies. Adv Drug Deliv Rev. 2006;58(5–6):707–22.

    Article  CAS  Google Scholar 

  6. Pradines JR, et al. Combining measurements to estimate properties and characterization extent of complex biochemical mixtures; applications to heparan sulfate. Sci Rep. 2016;6:24829.

    Article  CAS  Google Scholar 

  7. Venkataraman G, et al. Sequencing complex polysaccharides. Science. 1999;286(5439):537–42.

    Article  CAS  Google Scholar 

  8. Wardrop D, Keeling D. The story of the discovery of heparin and warfarin. Br J Haematol. 2008;141(6):757–63.

    Article  Google Scholar 

  9. Linhardt RJ, Gunay NS. Production and chemical processing of low molecular weight heparins. Semin Thromb Hemost. 1999;25(Suppl 3):5–16.

    CAS  Google Scholar 

  10. Liu H, et al. Lessons learned from the contamination of heparin. Nat Prod Rep. 2009;26(3):313–21.

    Article  CAS  Google Scholar 

  11. Lindahl U, et al. Structure of the antithrombin-binding site in heparin. Proc Natl Acad Sci U S A. 1979;76(7):3198–202.

    Article  CAS  Google Scholar 

  12. Rosenberg RD, Lam L. Correlation between structure and function of heparin. Proc Natl Acad Sci U S A. 1979;76(3):1218–22.

    Article  CAS  Google Scholar 

  13. Lee S, et al. Scientific considerations in the review and approval of generic enoxaparin in the United States. Nat Biotechnol. 2013;31(3):220–6.

    Article  CAS  Google Scholar 

  14. Beccati D, et al. Identification of a novel structure in heparin generated by potassium permanganate oxidation. Carbohydr Polym. 2010;82(3):699–705.

    Article  CAS  Google Scholar 

  15. Lee SE, et al. NMR of heparin API: investigation of unidentified signals in the USP-specified range of 2.12–3.00 ppm. Anal Bioanal Chem. 2011;399(2):651–62.

    Article  Google Scholar 

  16. Mourier PA, et al. Heparin sodium compliance to USP monograph: structural elucidation of an atypical 2.18 ppm NMR signal. J Pharm Biomed Anal. 2012;67–68:169–74.

    Article  Google Scholar 

  17. Eriksson BI, et al. A comparative study of three low-molecular weight heparins (LMWH) and unfractionated heparin (UH) in healthy volunteers. Thromb Haemost. 1995;73(3):398–401.

    CAS  Google Scholar 

  18. Samama MM, Gerotziafas GT. Comparative pharmacokinetics of LMWHs. Semin Thromb Hemost. 2000;26(Suppl 1):31–8.

    Article  CAS  Google Scholar 

  19. Guerrini M, et al. Oversulfated chondroitin sulfate is a contaminant in heparin associated with adverse clinical events. Nat Biotechnol. 2008;26(6):669–75.

    Article  CAS  Google Scholar 

  20. Kishimoto TK, et al. Contaminated heparin associated with adverse clinical events and activation of the contact system. N Engl J Med. 2008;358(23):2457–67.

    Article  CAS  Google Scholar 

  21. Keire DA, et al. Characterization of currently marketed heparin products: key tests for quality assurance. Anal Bioanal Chem. 2011;399(2):581–91.

    Article  CAS  Google Scholar 

  22. Campos-Garcia VR, et al. Process signatures in glatiramer acetate synthesis: structural and functional relationships. Sci Rep. 2017;7(1):12125.

    Article  Google Scholar 

  23. Bai Y, et al. Synthesis of hybrid block copolymers via integrated ring-opening metathesis polymerization and polymerization of NCA. Chem Commun (Camb). 2011;47(38):10830–2.

    Article  CAS  Google Scholar 

  24. Anderson J, et al. Demonstration of equivalence of a generic glatiramer acetate (Glatopa). J Neurol Sci. 2015;359(1–2):24–34.

    Article  CAS  Google Scholar 

  25. Ouyang Y, et al. Qualitative and quantitative analysis of heparin and low molecular weight heparins using size exclusion chromatography with multiple angle laser scattering/refractive index and inductively coupled plasma/mass spectrometry detectors. J Chromatogr A. 2017;1522:56–61.

    Article  CAS  Google Scholar 

  26. Bisio A, et al. Structural characterization of the low-molecular-weight heparin dalteparin by combining different analytical strategies. Molecules. 2017;22(7):E1051.

    Article  Google Scholar 

  27. Guerrini M, et al. Differentiation of generic enoxaparins marketed in the United States by employing NMR and multivariate analysis. Anal Chem. 2015;87(16):8275–83.

    Article  CAS  Google Scholar 

  28. Mourier PA, et al. Analytical and statistical comparability of generic enoxaparins from the US market with the originator product. J Pharm Biomed Anal. 2015;115:431–42.

    Article  CAS  Google Scholar 

  29. Guerrini M, et al. Combined quantitative (1)H and (13)C nuclear magnetic resonance spectroscopy for characterization of heparin preparations. Semin Thromb Hemost. 2001;27(5):473–82.

    Article  CAS  Google Scholar 

  30. Zhang F, et al. Structural characterization of heparins from different commercial sources. Anal Bioanal Chem. 2011;401(9):2793–803.

    Article  CAS  Google Scholar 

  31. Guerrini M, et al. Low molecular weight heparins: structural differentiation by bidimensional nuclear magnetic resonance spectroscopy. Semin Thromb Hemost. 2007;33(5):478–87.

    Article  CAS  Google Scholar 

  32. Shriver Z, et al. Sequencing of 3-O sulfate containing heparin decasaccharides with a partial antithrombin III binding site. Proc Natl Acad Sci U S A. 2000;97(19):10359–64.

    Article  CAS  Google Scholar 

  33. Mangrum JB, et al. Comparative analysis of INLIGHT-labeled enzymatically depolymerized heparin by reverse-phase chromatography and high-performance mass spectrometry. Anal Bioanal Chem. 2017;409(2):499–509.

    Article  CAS  Google Scholar 

  34. Sun X, et al. Capillary electrophoresis-mass spectrometry for the analysis of heparin oligosaccharides and low molecular weight heparin. Anal Chem. 2016;88(3):1937–43.

    Article  CAS  Google Scholar 

  35. Li G, et al. Bottom-up low molecular weight heparin analysis using liquid chromatography-fourier transform mass spectrometry for extensive characterization. Anal Chem. 2014;86(13):6626–32.

    Article  CAS  Google Scholar 

  36. Xiao Z, et al. Heparin mapping using heparin lyases and the generation of a novel low molecular weight heparin. J Med Chem. 2011;54(2):603–10.

    Article  CAS  Google Scholar 

  37. Zaia J, et al. Complete molecular weight profiling of low-molecular weight heparins using size exclusion chromatography-ion suppressor-high-resolution mass spectrometry. Anal Chem. 2016;88(21):10654–60.

    Article  CAS  Google Scholar 

  38. Turnbull JE, et al. A strategy for rapid sequencing of heparan sulfate and heparin saccharides. Proc Natl Acad Sci U S A. 1999;96(6):2698–703.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram Sasisekharan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 American Association of Pharmaceutical Scientists

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Raman, R., Shriver, Z., Clark, T., Sasisekharan, R. (2019). Integrated Approach for Characterization of Highly Heterogeneous Drugs. In: Sasisekharan, R., Lee, S., Rosenberg, A., Walker, L. (eds) The Science and Regulations of Naturally Derived Complex Drugs. AAPS Advances in the Pharmaceutical Sciences Series, vol 32. Springer, Cham. https://doi.org/10.1007/978-3-030-11751-1_18

Download citation

Publish with us

Policies and ethics