Skip to main content

Mechanism and Kinetics in Homogeneous Catalysis: A Computational Viewpoint

  • Chapter
  • First Online:

Part of the book series: Challenges and Advances in Computational Chemistry and Physics ((COCH,volume 29))

Abstract

The use of computational methods based on electronic structure theory and statistical mechanics to study reaction mechanisms and kinetics in homogeneous catalysis, especially organometallic catalysis and organocatalysis , is reviewed. The chapter focuses mostly on examples from the authors’ own group, published over the last two decades, and discusses progress and remaining challenges. It is argued that while it plays a valuable role in mechanistic studies, computation is not yet able to replace experimental studies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Jencks WP (1976) Enforced general acid-base catalysis of complex reactions and its limitations. Acc Chem Res 9:425–432. https://doi.org/10.1021/ar50108a001

    Article  CAS  Google Scholar 

  2. Landis CR, Halpern J (1987) Asymmetric hydrogenation of methyl-(Z)-α-acetamidocinnamate catalyzed by {1,2-bis(phenyl-o-anisyl)phosphino)ethan}rhodium(I): kinetics, mechanism, and origin of enantioselection. J Am Chem Soc 109:1746–1754. https://doi.org/10.1021/ja00240a025

    Article  CAS  Google Scholar 

  3. Gonzalez JA, Ogba OM, Morehouse GF, Rosson N, Houk KN, Leach AG, Cheong PHY, Burke MD, Lloyd-Jones GC (2016) MIDA boronates are hydrolysed fast and slow by two different mechanisms. Nat Chem 8:1067–1075. https://doi.org/10.1038/nchem.2571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Thomas AA, Denmark SE (2016) Pre-transmetalation intermediates in the Suzuki-Miyaura reaction revealed: the missing link. Science 352:329–332. https://doi.org/10.1126/science.aad6981

    Article  CAS  PubMed  Google Scholar 

  5. Thomas AA, Wang H, Zahrt AF, Denmark SE (2017) Structural, kinetic, and computational characterization of the elusive Arylpalladium(II)boronate complexes in the Suzuki–Miyaura reaction. J Am Chem Soc 139:3805–3821. https://doi.org/10.1021/jacs.6b13384

    Article  CAS  PubMed  Google Scholar 

  6. Noyori R, Richmond JP (2013) Ethical conduct in chemical research and publishing. Adv Synth Catal 355:3–8. https://doi.org/10.1002/adsc.201201128

    Article  CAS  Google Scholar 

  7. Harvey J, Brichard MH, Viehe HG (1993) Electrophilic ene-type reactions of phenyl vinyl sulfoxide with alkenes. J Chem Soc Perkin Trans 1:2275–2280. https://doi.org/10.1039/P19930002275

    Article  Google Scholar 

  8. Harvey JN, Viehe HG (1995) 3-thio-claisen rearrangement of the allyl vinyl sulfonium ion. J Chem Soc Chem Commun 2345–2346. https://doi.org/10.1039/c39950002345

  9. Aggarwal VK, Harvey JN, Richardson J (2002) Unravelling the mechanism of epoxide formation from sulfur ylids and aldehydes. J Am Chem Soc 124:5747–5756. https://doi.org/10.1021/ja025633n

    Article  CAS  PubMed  Google Scholar 

  10. Abdur-Rashid K, Clapham S, Hadzovic A, Harvey JN, Lough AJ, Morris RH (2002) Mechanism of the hydrogenation of ketones catalyzed by trans-dihydrido(diamine)ruthenium(II) complexes. J Am Chem Soc 124:15104–15118. https://doi.org/10.1021/ja016817p

    Article  CAS  PubMed  Google Scholar 

  11. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652. https://doi.org/10.1063/1.464913

    Article  CAS  Google Scholar 

  12. Aggarwal VK, Richardson J (2003) The complexity of catalysis: origins of enantio- and diastereocontrol in sulfur ylide mediated epoxidation reactions. Chem Commun 2644–2651. https://doi.org/10.1039/b304625g

  13. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154104. https://doi.org/10.1063/1.3382344

    Article  CAS  PubMed  Google Scholar 

  14. Riplinger C, Pinski P, Becker U, Valeev EF, Neese F (2016) Sparse maps—a systematic infrastructure for reduced-scaling electronic structure methods. II. Linear scaling domain based pair natural orbital coupled cluster theory. J Chem Phys 144:024109. https://doi.org/10.1063/1.4939030

  15. Truhlar DG (1998) Basis-set extrapolation. Chem Phys Lett 194:45–48. https://doi.org/10.1016/S0009-2614(98)00866-5

    Article  Google Scholar 

  16. Liu Z, Patel C, Harvey JN, Sunoj RB (2017) Mechanism and reactivity in the Morita–Baylis–Hillman reaction: the challenge of accurate computations. Phys Chem Chem Phys 19:30647–30657. https://doi.org/10.1039/c7cp06508f

    Article  CAS  PubMed  Google Scholar 

  17. For one example of a modern approach to archving quantum chemistry results, see the ioChem-BD project. https://www.iochem-bd.org/

  18. Leyssens T, Peeters D, Harvey JN (2008) Origin of enantioselective hydrogenation of ketones by RuH2(diphosphine)(diamine) catalysts: a theoretical study. Organometallics 27:1514–1523. https://doi.org/10.1021/om700940m

    Article  CAS  Google Scholar 

  19. Dub PA, Henson NJ, Martin RL, Gordon JC (2014) Unravelling the mechanism of the asymmetric hydrogenation of acetophenone by [RuX2(diphosphine)(1,2-diamine)] catalysts. J Am Chem Soc 136:3505–3521. https://doi.org/10.1021/ja411374j

    Article  CAS  PubMed  Google Scholar 

  20. Pavlova A, Meijer EJ (2012) Understanding the role of water in aqueous ruthenium-catalyzed transfer hydrogenation of ketones. ChemPhysChem 13:3492–3496. https://doi.org/10.1002/cphc.201200454

    Article  CAS  PubMed  Google Scholar 

  21. Tan EHP, Lloyd-Jones GC, Harvey JN, Lennox AJJ, Mills BM. [(RCN)2PdCl2]-catalyzed alkene isomerization: selective inhibition of migration reveals a non-hydride pathway for E/Z interconversion. Angew Chem Int Ed 50:9602–9606. https://doi.org/10.1002/anie.201103947

  22. Robiette R, Aggarwal VK, Harvey JN (2007) Mechanism of the Morita-Baylis-Hillman reaction: a computational investigation. J Am Chem Soc 129:15513–15525. https://doi.org/10.1021/ja0717865

    Article  CAS  PubMed  Google Scholar 

  23. Harvey JN (2010) Ab initio transition state theory for polar reactions in solution. Faraday Discuss 145:487–505. https://doi.org/10.1039/b907340j

    Article  CAS  Google Scholar 

  24. Plata RE, Singleton DA (2015) A case study of the mechanism of alcohol-mediated Morita Baylis–Hillman reactions. The importance of experimental observations. J Am Chem Soc 137:3811–3826. https://doi.org/10.1021/ja5111392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ho J, Coote ML (2010) A universal approach for continuum solvent pKa calculations: are we there yet? Theor Chem Acc 125:3–21. https://doi.org/10.1007/s00214-009-0667-0

    Article  CAS  Google Scholar 

  26. Lau JKC, Deubel DV (2006) Hydrolysis of the anticancer drug cisplatin: pitfalls in the interpretation of quantum chemical calculations. J Chem Theory Comput 2:103–106. https://doi.org/10.1021/ct050229a

    Article  CAS  PubMed  Google Scholar 

  27. Besora M, Vidossich P, Lledos A, Ujaque G, Maseras F (2018) Calculation of reaction free energies in solution: a comparison of current approaches. J Phys Chem A 122:1392–1399. https://doi.org/10.1021/acs.jpca.7b11580

    Article  CAS  PubMed  Google Scholar 

  28. Besora M, Maseras F (2018) Microkinetic modeling in homogeneous catalysis. WIREs Comput Mol Sci 8 (in press). https://doi.org/10.1002/wcms.1372

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy N. Harvey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Harvey, J.N. (2019). Mechanism and Kinetics in Homogeneous Catalysis: A Computational Viewpoint. In: Broclawik, E., Borowski, T., Radoń, M. (eds) Transition Metals in Coordination Environments. Challenges and Advances in Computational Chemistry and Physics, vol 29. Springer, Cham. https://doi.org/10.1007/978-3-030-11714-6_10

Download citation

Publish with us

Policies and ethics