Skip to main content

Dynamic Research of Shape Memory Alloys

  • Chapter
  • First Online:
Dynamical Processes in Generalized Continua and Structures

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 103))

Abstract

The results of dynamic tests of the TiNi and CuAlNi shape memory alloys are given. Compressive and tensile tests of the TiNi alloy were carried out in the temperature range of 20–300 °C. A significant change was revealed in the elastic modulus before the dislocation plastic flow and the dislocation yield stress with a change in the test temperature in the range of the reverse martensitic transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jani, J.M., Leary, M., Subic, A., Gibson, M.A.: A review of shape memory alloy research, applications and opportunities. Mater. Des. 56(4), 1078–1113 (2014). https://doi.org/10.1016/j.matdes.2013.11.084

    Article  Google Scholar 

  2. Razov, A. I.: Application of Titanium Nickelide-based alloys in engineering. Phys. Metals Metallogr. 97(Suppl 1), 97–126 (2004)

    Google Scholar 

  3. Yahia, L. (ed.): Shape Memory Implants, p. 349. Springer-Verlag, Berlin-Heidelberg-New York (2000)

    Google Scholar 

  4. Petrini, L., Migliavacca, F.: Biomedical applications of shape memory alloys. J. Metall. 2011, Art ID 501483 (2011)

    Google Scholar 

  5. Khmelevskaya, I., Ryklina, E., Korotitskiy, A.: Application of thermomechanically treated Ti-Ni SMA. In: Resnina, N., Rubanik, V. (eds.) Shape Memory Alloys: Properties, Technologies, Opportunities, pp. 603–637. Trans Tech Publications Ltd., Pfaffikon, Switzerland (2015)

    Google Scholar 

  6. Razov, A., Cherniavsky, A.: Application of SMAs in modern spacecraft and devices. J. de Physique IV 112(10), 1173–1176 (2003)

    Google Scholar 

  7. Hartl, D.J., Lagoudas, D.C.: Aerospace applications of shape memory alloys. Proc. Inst. Mech. Eng. Part G: J. Aerosp. Eng. 221(4), 35–552 (2007)

    Google Scholar 

  8. Tirelli, D., Mascelloni, S.: Characterisation and optimisation of shape memory alloys for seismic applications. J. Phys. IV 10, 665–670 (2000)

    Google Scholar 

  9. Castellano, M.G., Indirli, M., Martelli, A.: Progress of application, research and development and design guidelines for shape memory alloy devices for cultural heritage structures in Italy. In: Proceedings of SPIE—The International Society for Optical Engineering, vol. 4330, pp. 250–261 (2001)

    Google Scholar 

  10. Wilson, J.C., Wesolowsky, M.J.: Shape memory alloys for seismic response modification: a state-of-the-art. Earthq. Spectra 21(2), 569–601 (2005)

    Google Scholar 

  11. Torra, V., Isalgue, A., Lovey, F.C., Sade, M.: Shape memory alloys as an effective tool to damp oscillations: study of the fundamental parameters required to guarantee technological applications. J. Therm. Anal. Calorim. 119(3), 1475–1533 (2015). https://doi.org/10.1007/s10973-015-4405-7

    Article  Google Scholar 

  12. Leo, P.H., Shield, T.W., Bruno, O.P.: Transient heat transfer effects on the pseudoelastic behavior of shape-memory wires. Acta Metall. Mater. 41, 2477–2485 (1993)

    Article  Google Scholar 

  13. Millet, J.C., Bourne, N.K., Gray III, G.T.: Behavior of the shape memory alloy NiTi during One-dimensional shock loading. J. Appl. Phys. 92, 3107–3110 (2002)

    Article  Google Scholar 

  14. Thamburaja, P.: Constitutive equations for martensitic reorientation and detwinning in shape-memory alloys. J. Mech. Phys. Solids 53, 825–856 (2005)

    Article  MathSciNet  Google Scholar 

  15. Melnik, R.V.N., Roberts, A.J., Thomas, K.A.: Coupled thermomechanical dynamics of phase transitions in shape memory alloys and related hysteresis phenomena. Mech. Res. Commun. 28(6), 637–651 (2001)

    Article  MathSciNet  Google Scholar 

  16. Bragov, A.M., Danilov, A.N., Konstantinov, AYu., Lomunov, A.K., Motorin, A.S., Razov, A.I.: Mechanical and structural aspects of high-strain-rate deformation of NiTi alloy. Phys. Metals Metallogr. 116(4), 385–392 (2015). https://doi.org/10.1134/S0031918X15040031)

    Article  Google Scholar 

  17. Ogawa, K.: Characteristics of shape memory alloy at high strain rate. In: Proceedings of the International Conference on Mechanical and Physical Behaviour of Materials under Dynamic Loading (DYMAT-88), 19–23 Sept 1988, Ajaccio, France. J. Phys. IV. (1988). Coll. C3—Suppl. J. Phys. III 49(11), 115–120

    Google Scholar 

  18. Liu, Y., Yulong, L., Ramesh, K.T., Van Humbeeck J.: High strain rate deformation of martensitic NiTi shape memory alloy. Scr. Mater. 41(1), 89–95 (1999)

    Google Scholar 

  19. Liu, Y., Li, Y., Ramesh, K.T.: Rate dependence of deformation mechanisms in a shape memory alloy. Philos. Mag. Phys. Condens. Matter Struct. Defects Mech. Propert. 82(12), 2461–2473 (2002)

    Google Scholar 

  20. Belyaev, S., Petrov, A., Razov, A., Volkov, A.: Mechanical properties of titanium nickelide at high strain rate loading. Mater. Sci. Eng. A 378(1–2), 122–124 (2004). https://doi.org/10.1016/j.msea.2003.11.059

    Article  Google Scholar 

  21. Jiang, F., Vecchio, K.S.: Fracture of Nitinol under quasistatic and dynamic loading. Metall. Mater. Trans. A. 38(12), 2907–2915 (2007)

    Google Scholar 

  22. Qiu, Y., Young, M.L., Nie, X.: High strain rate compression of martensitic NiTi shape memory alloy at different temperatures. Metall. Mater. Trans. A 48(2), 601–608 (2017). https://doi.org/10.1007/s11661-016-3857-0

    Article  Google Scholar 

  23. Lexcellent, C., Rejzner, J.: Modelling of the strain rate effect, creep and relaxation of a Ni-Ti shape memory alloy under tension (compression)—torsional proportional loading in the pseudoelastic range. Smart Mater. Struct. 9(5), 613–621 (2000)

    Article  Google Scholar 

  24. Lagoudas, D.C., Ravi-Chandar, K., Sarh, K., Popov, P.: Dynamic loading of polycrystalline shape memory alloy rods. Mech. Mater. 35, 689–716 (2003)

    Article  Google Scholar 

  25. Evard, M., Motorin, A., Razov, A., Volkov, A.: Microstructural modeling of a TiNi alloy at high strain rate tension. Mater. Today Proc. 4(3, Part B), 4637–4641 (2017). https://doi.org/10.1016/j.matpr.2017.04.043

    Article  Google Scholar 

  26. Kolsky, H.: An investigation of the mechanical properties of material at very high rates of loading. Proc. Phys. Soc. 62B, 676–700 (1949)

    Article  Google Scholar 

  27. Bragov, A.M., Lomunov, A.K.: Methodological aspects of studying dynamic material properties using the Kolsky method. Int. J. Impact Eng. 16(2), 321–330 (1995)

    Article  Google Scholar 

  28. Nicholas, T.: Tensile testing of materials at high rates of strain. Exp. Mech. 21(5), 177–195 (1981)

    Google Scholar 

Download references

Acknowledgements

The study was financially supported by the Federal Targeted Program for Research and Development in Priority Areas of Development of the Russian Scientific and Technological Complex for 2014–2020 under the contract No. 14.578.21.0246 (unique identifier RFMEFI57817X0246).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Igumnov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bragov, A.M., Igumnov, L.A., Konstantinov, A.Y., Lomunov, A.K., Razov, A.I. (2019). Dynamic Research of Shape Memory Alloys. In: Altenbach, H., Belyaev, A., Eremeyev, V., Krivtsov, A., Porubov, A. (eds) Dynamical Processes in Generalized Continua and Structures. Advanced Structured Materials, vol 103. Springer, Cham. https://doi.org/10.1007/978-3-030-11665-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11665-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11664-4

  • Online ISBN: 978-3-030-11665-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics