Skip to main content

Nonlocal Elasticity Models for Mechanics of Complex Nanoscopic Structures

  • Chapter
  • First Online:
Computational Continuum Mechanics of Nanoscopic Structures

Abstract

In the previous chapters, we have focused on the applications of the nonlocal elasticity models to the study of the mechanical characteristics of simple nanoscopic structure. In this chapter, we will survey the nonlocal continuum-based studies concerned with the mechanical behaviour of more complex nanoscopic structures. There are three main sections in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.J. Li, K.D. Zhu, All-optical mass sensing with coupled mechanical resonator systems. Phys. Rep. 525, 223–254 (2013)

    Article  MathSciNet  Google Scholar 

  2. J.J. Davis, K.S. Coleman, B.R. Azamian, C.B. Bagshaw, M.L.H. Green, Chemical and biochemical sensing with modified single walled carbon nanotubes. Chem. Eur. J. 9, 3732–3739 (2003)

    Article  Google Scholar 

  3. W. Yang, P. Thordarson, J.J. Gooding, S.P. Ringer, F. Braet, Carbon nanotubes for biological and biomedical applications. Nanotechnology 18, 412001 (2007)

    Article  Google Scholar 

  4. C.M. Tilmaciu, M.C. Morris, Carbon nanotube biosensors. Front. Chem. 3, 59 (2015)

    Article  Google Scholar 

  5. T. Natsuki, Carbon nanotube-based nanomechanical sensor: theoretical analysis of mechanical and vibrational properties. Electronics 6, 56 (2017)

    Article  Google Scholar 

  6. P. Poncharal, Z.L. Wang, D. Ugarte, W.A. Heer, Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science 283, 1513–1516 (1999)

    Article  Google Scholar 

  7. H.L. Lee, J.C. Hsu, W.J. Chang, Frequency shift of carbon-nanotube-based mass sensor using nonlocal elasticity theory. Nanoscale Res. Lett. 5, 1774–1778 (2010)

    Article  Google Scholar 

  8. M. Aydogdu, S. Filiz, Modeling carbon nanotube-based mass sensors using axial vibration and nonlocal elasticity. Physica E 43, 1229–1234 (2011)

    Article  Google Scholar 

  9. Z.B. Shen, B. Deng, X.F. Li, G.J. Tang, Vibration of double-walled carbon nanotube-based mass sensor via nonlocal Timoshenko beam theory. J. Nanotechnol. Eng. Med. 2, 031003 (2012)

    Article  Google Scholar 

  10. T. Murmu, S. Adhikari, Nonlocal frequency analysis of nanoscale biosensors. Sens. Actuator. A 173, 41–48 (2012)

    Article  Google Scholar 

  11. I. Elishakoff, N. Challamel, C. Soret, Y. Bekel, T. Gomez, Virus sensor based on single-walled carbon nanotube: improved theory incorporating surface effects. Phil. Trans. R. Soc. A 371, 20120424 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. T. Natsuki, N. Matsuyama, J.X. Shi, Q.Q. Ni, Vibration analysis of nanomechanical mass sensor using carbon nanotubes under axial tensile load. Appl. Phys. A 116, 1001–1007 (2014)

    Article  Google Scholar 

  13. T. Natsuki, N. Matsuyama, Q.Q. Ni, Vibration analysis of carbon nanotube-based resonator using nonlocal elasticity theory. Appl. Phys. A 120, 1309–1313 (2015)

    Article  Google Scholar 

  14. M.A. Eltaher, M.A. Agwa, F.F. Mahmoud, Nanobeam sensor for measuring a zeptogram mass. Int. J. Mech. Mater. Des. 12, 211–221 (2016)

    Article  Google Scholar 

  15. X.F. Li, G.J. Tang, Z.B. Shen, K.Y. Lee, Resonance frequency and mass identification of zeptogram-scale nanosensor based on the nonlocal beam theory. Ultrasonics 55, 75–84 (2015)

    Article  Google Scholar 

  16. H. Askari, D. Younesian, E. Esmailzadeh, L. Cveticanin, Nonlocal effect in carbon nanotube resonators: a comprehensive review. Adv. Mech. Eng. 9, 1–24 (2017)

    Article  Google Scholar 

  17. Z.B. Shen, H.L. Tang, D.K. Li, G.J. Tang, Vibration of single-layered graphene sheet-based nanomechanical sensor via nonlocal Kirchhoff plate theory. Comput. Mater. Sci. 61, 200–205 (2012)

    Article  Google Scholar 

  18. A. Sakhaee-Pour, M.T. Ahmadian, A. Vafai, Applications of single-layered graphene sheets as mass sensors and atomistic dust detectors. Solid State Commun. 145, 168–172 (2008)

    Article  Google Scholar 

  19. S. Adhikari, R. Chowdhury, Zeptogram sensing from gigahertz vibration: graphene based nanosensor. Physica E 44, 1528–1534 (2012)

    Article  Google Scholar 

  20. T. Murmu, S. Adhikari, Nonlocal mass nanosensors based on vibrating monolayer graphene sheets. Sens. Actuator. B 188, 1319–1327 (2013)

    Article  Google Scholar 

  21. H.L. Lee, Y.C. Yang, W.J. Chang, Mass detection using a graphene-based nanomechanical resonator. Japan. J. Appl. Phys. 52, 025101 (2013)

    Article  Google Scholar 

  22. T. Natsuki, J.X. Shi, Q.Q. Ni, Vibration analysis of nanomechanical mass sensor using double-layered graphene sheets resonators. J. Appl. Phys. 114, 094307 (2013)

    Article  Google Scholar 

  23. Z.B. Shen, R.W. Jiang, L. Zhang, G.J. Tang, Nonlocal Galerkin strip transfer function method for vibration of double-layered graphene mass sensor. Acta Mech. Solida Sin. 31, 94–107 (2018)

    Article  Google Scholar 

  24. S.A. Fazelzadeh, E. Ghavanloo, Nanoscale mass sensing based on vibration of single-layered graphene sheet in thermal environments. Acta Mech. Sin. 30, 84–91 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. S.K. Jalali, M.H. Naei, N.M. Pugno, A mixed approach for studying size effects and connecting interactions of planar nano structures as resonant mass sensors. Microsyst. Technol. 21, 2375–2386 (2015)

    Article  Google Scholar 

  26. S.K. Jalali, M.H. Naei, N.M. Pugno, Graphene-based resonant sensors for detection of ultra-fine nanoparticles: molecular dynamics and nonlocal elasticity investigations. Nano 10, 1550024 (2015)

    Article  Google Scholar 

  27. D. Karlicic, T. Murmu, S. Adhikari, M. McCarthy, Nonlocal Structural Mechanics (Wiley-ISTE, London, 2016)

    MATH  Google Scholar 

  28. J. Li, X. Wang, L. Zhao, X. Gao, Y. Zhao, R. Zhou, Rotation motion of designed nano-turbine. Sci. Rep. 4, 5846 (2014)

    Article  Google Scholar 

  29. M. Ghadiri, N. Shafiei, Vibration analysis of a nano-turbine blade based on Eringen nonlocal elasticity applying the differential quadrature method. J. Vib. Cont. 23, 3247–3265 (2017)

    Article  MathSciNet  Google Scholar 

  30. M. Ghadiri, N. Shafiei, S.H. Alavi, Vibration analysis of a rotating nanoplate using nonlocal elasticity theory. J. Solid Mech. 9, 319–337 (2017)

    Google Scholar 

  31. N. Shafiei, M. Ghadiri, H. Makvandi, S.A. Hosseini, Vibration analysis of Nano-Rotor’s Blade applying Eringen nonlocal elasticity and generalized differential quadrature method. Appl. Math. Model. 43, 191–206 (2017)

    Article  MathSciNet  Google Scholar 

  32. S. Dumont, M. Prakash, Emergent mechanics of biological structures. Mol. Biol. Cell 25, 3461–3465 (2014)

    Article  Google Scholar 

  33. G. Bao, Mechanics of biomolecules. J. Mech. Phys. Solids 50, 2237–2274 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  34. E. Ghavanloo, F. Daneshmand, M. Amabili, Vibration analysis of a single microtubule surrounded by cytoplasm. Physica E 43, 192–198 (2010)

    Article  Google Scholar 

  35. B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter, Molecular Biology of the Cell (Garland Science, New York, 2005)

    Book  Google Scholar 

  36. F. Daneshmand, E. Ghavanloo, M. Amabili, Wave propagation in protein microtubules modeled as orthotropic elastic shells including transverse shear deformations. J. Biomech. 44, 1960–1966 (2011)

    Article  Google Scholar 

  37. J.S. Hyams, C.S. Lloyd, Microtubules (Wiley-Liss, New York, 1994)

    Google Scholar 

  38. M. Schliwa, G. Woehlke, Molecular motors. Nature 422, 759–765 (2003)

    Article  Google Scholar 

  39. M.A. Jordan, L. Wilson, Microtubules as a target for anticancer drugs. Nat. Rev. Cancer 4, 253–265 (2004)

    Article  Google Scholar 

  40. L. García-Hevia, F. Fernández, C. Grávalos, A. García, J.C. Villegas, M.L. Fanarraga, Nanotube interactions with microtubules: implications for cancer medicine. Nanomedicine 9, 1581–1588 (2014)

    Article  Google Scholar 

  41. Y.J. Shi, W.L. Guo, C.Q. Ru, Relevance of Timoshenko-beam model to microtubules of low shear modulus. Physica E 41, 213–219 (2008)

    Article  Google Scholar 

  42. T. Li, A mechanics model of microtubule buckling in living cells. J. Biomech. 41, 1722–1729 (2008)

    Article  Google Scholar 

  43. E. Ghavanloo, F. Daneshmand, M. Amabili, Prediction of bending stiffness and deformed shape of non-axially compressed microtubule by a semi-analytical approach. J. Biol. Phys. 36, 427–435 (2010)

    Article  Google Scholar 

  44. Y. Gao, F.M. Lei, Small scale effects on the mechanical behaviors of protein microtubules based on the nonlocal elasticity theory. Biochem. Bioph. Res. Co. 387, 467–471 (2009)

    Article  Google Scholar 

  45. O. Civalek, B. Akgoz, Free vibration analysis of microtubules as cytoskeleton components: nonlocal Euler-Bernoulli beam modelling. Sci. Iranica Trans. B 17, 367–375 (2010)

    Google Scholar 

  46. O. Civalek, C. Demir, Bending analysis of microtubules using nonlocal Euler-Bernoulli beam theory. Appl. Math. Model. 35, 2053–2067 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  47. B. Akgz, O. Civalek, Mechanical analysis of isolated microtubules based on a higher-order shear deformation beam theory. Comp. Struct. 118, 9–18 (2014)

    Article  Google Scholar 

  48. O. Civalek, C. Demir, A simple mathematical model of microtubules surrounded by an elastic matrix by nonlocal finite element method. Appl. Math. Comput. 289, 335–352 (2016)

    MathSciNet  Google Scholar 

  49. H. Heireche, A. Tounsi, H. Benhassaini, A. Benzair, M. Bendahmane, M. Missouri, S. Mokademd, Nonlocal elasticity effect on vibration characteristics of protein microtubules. Physica E 42, 2375–2379 (2010)

    Article  Google Scholar 

  50. S. Li, C.Y. Wang, P. Nithiarasu, Structureproperty relation and relevance of beam theories for microtubules: a coupled molecular and continuum mechanics study. Biomech. Model. Mechan. 17, 339–349 (2018)

    Article  Google Scholar 

  51. K.M. Liew, P. Xiang, L.W. Zhang, Mechanical properties and characteristics of microtubules: a review. Compos. Struct. 123, 98–108 (2015)

    Article  Google Scholar 

  52. H.S. Shen, Nonlocal shear deformable shell model for bending buckling of microtubules embedded in an elastic medium. Phys. Lett. A 374, 4030–4039 (2010)

    Article  MATH  Google Scholar 

  53. H.S. Shen, Nonlocal shear deformable shell model for postbuckling of axially compressed microtubules embedded in an elastic medium. Biomech. Model. Mechan. 9, 345–357 (2010)

    Article  Google Scholar 

  54. H.S. Shen, Nonlocal shear deformable shell model for torsional buckling and postbuckling of microtubules in thermal environments. Mech. Res. Commun. 54, 83–95 (2013)

    Article  Google Scholar 

  55. Y. Gao, L. An, A nonlocal elastic anisotropic shell model for microtubule buckling behaviors in cytoplasm. Physica E 42, 2406–2415 (2010)

    Article  Google Scholar 

  56. J. Wang, Y. Gao, Nonlocal orthotropic shell model applied on wave propagation in microtubules. Appl. Math. Model. 40, 5731–5744 (2016)

    Article  MathSciNet  Google Scholar 

  57. J.M. Schnur, Lipid tubules: a paradigm for molecularly engineered structures. Science 262, 1669–1676 (1993)

    Article  Google Scholar 

  58. Y. Zhao, L. An, J. Fang, Buckling of lipid tubules in shrinking liquid droplets. Nano Lett. 7, 1360–1363 (2007)

    Article  Google Scholar 

  59. N.J. Meilander, X. Yu, N.P. Ziats, R.V. Bellamkonda, Lipid-based microtubular drug delivery vehicles. J Control. Release. 71, 141–152 (2001)

    Article  Google Scholar 

  60. A.J. Patil, E. Muthusamy, A.M. Seddon, S. Mann, Higher-order synthesis of organoclay pipes using self-assembled lipid templates. Adv. Mater. 15, 1816–1819 (2003)

    Article  Google Scholar 

  61. T.J. Melia, M.E. Sowa, L. Schutze, T.G. Wensel, Formation of helical protein assemblies of IgG and transducin on varied lipid tubules. J. Struct. Biol. 128, 119–130 (1999)

    Article  Google Scholar 

  62. P. Yager, P.E. Schoen, Formation of tubules by a polymerizable surfactant. Mol. Cryst. Liq. Cryst. 106, 371–381 (1984)

    Article  Google Scholar 

  63. H.S. Shen, Nonlinear analysis of lipid tubules by nonlocal beam model. J. Theor. Biol. 276, 50–56 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  64. J. Zhong, Y. Fu, C. Tao, Linear free vibration in pre/post-buckled states and nonlinear dynamic stability of lipid tubules based on nonlocal beam model. Meccanica 51, 1481–1489 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  65. W.H. Roos, I.L. Ivanovska, A. Evilevitch, G.J.L. Wuite, Viral capsids: mechanical characteristics, genome packaging and delivery mechanisms. Cell. Mol. Life Sci. 64, 1484–1497 (2007)

    Article  Google Scholar 

  66. M. Talati, P.K. Jha, Acoustic phonon quantization and low-frequency Raman spectra of spherical viruses. Phys. Rev. E 73, 011901 (2006)

    Article  Google Scholar 

  67. M. Babincová, P. Sourivong, P. Babinec, Resonant absorption of ultrasound energy as a method of HIV destruction. Med. Hypotheses 55, 450–451 (2000)

    Article  Google Scholar 

  68. L.H. Ford, Estimate of the vibrational frequencies of spherical virus particles. Phys. Rev. E 67, 051924 (2003)

    Article  Google Scholar 

  69. A.A. Balandin, V.A. Fonoberov, Vibrational modes of nano-template viruses. J. Biomed. Nanotechnol. 1, 90–95 (2005)

    Article  Google Scholar 

  70. E. Ghavanloo, S.A. Fazelzadeh, Nonlocal shell model for predicting axisymmetric vibration of spherical shell-like nanostructures. Mech. Adv. Mater. Struct. 22, 597–603 (2015)

    Article  Google Scholar 

  71. S.W. Chang, M.J. Buehler, Molecular biomechanics of collagen molecules. Mater. Today 17, 70–76 (2014)

    Article  Google Scholar 

  72. H. Utiyama, K. Sakato, K. Ikehara, T. Setsuiye, M. Kurata, Flexibility of tropocollagen from sedimentation and viscosity. Biopolymers 12, 53–64 (1973)

    Article  Google Scholar 

  73. S. Kasas, G. Dietler, Techniques for measuring microtubule stiffness. Curr. Nanosci. 3, 79–96 (2007)

    Article  Google Scholar 

  74. S. Vesentini, A. Redaelli, A. Gautieri, Nanomechanics of collagen microfibrils. Muscles Ligaments Tendons J. 3, 23–34 (2013)

    Google Scholar 

  75. E. Ghavanloo, Persistence length of collagen molecules based on nonlocal viscoelastic model. J. Biol. Phys. 43, 525–534 (2017)

    Article  Google Scholar 

  76. L. Chico, V.H. Crespi, L.X. Benedict, S.G. Louie, M.L. Cohen, Pure carbon nanoscale devices: nanotube heterojunctions. Phys. Rev. Lett. 76, 971–974 (1996)

    Article  Google Scholar 

  77. Z. Qin, Q.H. Qin, X.Q. Feng, Mechanical property of carbon nanotubes with intramolecular junctions: molecular dynamics simulations. Phys. Lett. A 372, 6661–6666 (2008)

    Article  MATH  Google Scholar 

  78. S. Filiz, M. Aydogdu, Axial vibration of carbon nanotube heterojunctions using nonlocal elasticity. Comput. Mater. Sci. 49, 619–627 (2010)

    Article  Google Scholar 

  79. B.W. Smith, M. Monthioux, D.E. Luzzi, Encapsulated C\(_{60}\) in carbon nanotubes. Nature 396, 323–324 (1998)

    Article  Google Scholar 

  80. B.W. Smith, M. Monthioux, D.E. Luzzi, Carbon nanotube encapsulated fullerenes: a unique class of hybrid materials. Chem. Phys. Lett. 315, 31–36 (1999)

    Article  Google Scholar 

  81. R. Ansari, F. Sadeghi, B. Motevalli, A comprehensive study on the oscillation frequency of spherical fullerenes in carbon nanotubes under different system parameters. Commun. Nonlinear Sci. Numer. Simul. 18, 769–784 (2013)

    Article  Google Scholar 

  82. B.J. Cox, N. Thamwattana, J.M. Hill, Mechanics of atoms and fullerenes in single-walled carbon nanotubes: I. Acceptance and suction energies. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 463, 461–476 (2007)

    Google Scholar 

  83. S.K. Joung, T. Okazaki, S. Okada, S. Iijima, Weak response of metallic single-walled carbon nanotubes to \(\rm C_{60}\) encapsulation studied by resonance Raman spectroscopy. J. Phys. Chem. C 116, 23844–23850 (2012)

    Article  Google Scholar 

  84. E. Ghavanloo, S.A. Fazelzadeh, H. Rafii-Tabar, A computational modeling of Raman radial breathing-like mode frequencies of fullerene encapsulated inside single-walled carbon nanotubes. J. Mol. Model. 23, 48 (2017)

    Article  Google Scholar 

  85. M. Asghari, R. Naghdabadi, J. Rafati-Heravi, Small scale effects on the stability of carbon nano-peapods under radial pressure. Physica E 43, 1050–1055 (2011)

    Article  Google Scholar 

  86. M. Asghari, J. Rafati, R. Naghdabadi, Torsional instability of carbon nano-peapods based on the nonlocal elastic shell theory. Physica E 47, 316–323 (2013)

    Article  Google Scholar 

  87. J.H. Park, S.B. Sinnott, N.R. Aluru, Ion separation using a Y-junction carbon nanotube. Nanotechnology 17, 895–900 (2006)

    Article  Google Scholar 

  88. M. Terrones, F. Banhart, N. Grobert, J.C. Charlier, H. Terrones, P.M. Ajayan, Molecular junctions by joining single-walled carbon nanotubes. Phys. Rev. Lett. 89, 075505 (2002)

    Article  Google Scholar 

  89. A. Ghorbanpour-Arani, M.S. Zarei, Nonlinear nonlocal vibration of an embedded viscoelastic Y-SWCNT conveying viscous fluid under magnetic field using homotopy analysis method. J. Solid Mech. 6, 173–193 (2014)

    Google Scholar 

  90. A. Ghorbanpour-Arani, M.S. Zarei, Nonlocal vibration of Y-shaped CNT conveying nanomagnetic viscous fluid under magnetic field. Ain Shams Eng. J. 6, 565–575 (2015)

    Article  Google Scholar 

  91. A.H. Ghorbanpour-Arani, A. Rastgoo, M.S. Zarei, A. Ghorbanpour-Arani, E. Haghparast, Nonlocal elastic medium modeling for vibration analysis of asymmetric conveyed-fluid Y-shaped single-walled carbon nanotube considering viscothermal effects. P. I. Mech. Eng. C-J. Mec. 231, 574–595 (2017)

    Article  Google Scholar 

  92. K.F. Wang, B.L. Wang, The electromechanical coupling behavior of piezoelectric nanowires: surface and small-scale effects. Europhys. Lett. 97, 66005 (2012)

    Article  Google Scholar 

  93. A. Ghorbanpour-Arani, S. Amir, A.R. Shajari, M.R. Mozdianfard, Electro-thermo-mechanical buckling of DWBNNTs embedded in bundle of CNTs using nonlocal piezoelasticity cylindrical shell theory. Compos. Part B 43, 195–203 (2012)

    Article  Google Scholar 

  94. C. Liu, L.L. Ke, Y.S. Wang, Buckling and postbuckling of size-dependent piezoelectric Timoshenko nanobeams subject to thermo-electro-mechanical loadings. Int. J. Struct. Stab. Dyn. 14, 1350067 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  95. L.L. Ke, Y.S. Wang, Thermoelectric-mechanical vibration of piezoelectric nanobeams based on the nonlocal theory. Smart Mater. Struct. 21, 025018 (2012)

    Article  Google Scholar 

  96. L.L. Ke, Y.S. Wang, Z.D. Wang, Nonlinear vibration of the piezoelectric nanobeams based on the nonlocal theory. Comput. Struct. 94, 2038–2047 (2012)

    Article  Google Scholar 

  97. C. Liu, L.L. Ke, Y.S. Wang, J. Yang, S. Kitipornchai, Thermo-electro-mechanical vibration of piezoelectric nanoplates based on the nonlocal theory. Compos. Struct. 106, 167–174 (2013)

    Article  Google Scholar 

  98. K.F. Wang, B.L. Wang, T. Kitamura, A review on the application of modified continuum models in modeling and simulation of nanostructures. Acta Mech. Sin. 32, 83–100 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  99. N.V. Krainyukova, E.N. Zubarev, Carbon honeycomb high capacity storage for gaseous and liquid species. Phys. Rev. Lett. 116, 055501 (2016)

    Article  Google Scholar 

  100. Z. Zhang, A. Kutana, Y. Yang, N.V. Krainyukova, E.S. Penev, B.I. Yakobson, Nanomechanics of carbon honeycomb cellular structures. Carbon 113, 26–32 (2017)

    Article  Google Scholar 

  101. J. Zhang, C.Y. Wang, Buckling of carbon honeycombs: a new mechanism for molecular mass transportation. J. Phys. Chem. C 121, 8196–8203 (2017)

    Article  Google Scholar 

  102. J. Zhang, A nonlocal continuum model for the buckling of carbon honeycombs. Meccanica 53, 2999–3013 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esmaeal Ghavanloo .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ghavanloo, E., Rafii-Tabar, H., Fazelzadeh, S.A. (2019). Nonlocal Elasticity Models for Mechanics of Complex Nanoscopic Structures. In: Computational Continuum Mechanics of Nanoscopic Structures. Springer Tracts in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-11650-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11650-7_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11649-1

  • Online ISBN: 978-3-030-11650-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics