Skip to main content

Autonomous Navigation with Open Software Platform for Field Robots

  • Conference paper
  • First Online:
Informatics in Control, Automation and Robotics (ICINCO 2017)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 495))

Abstract

In this chapter, we present an autonomous monitoring robot platform for agricultural farms and fields that is built using low-cost off-the-shelf hardware and open source software so as to be affordable for farmers. We provide a review of the current state of the art in autonomous agricultural robots and summarize the challenges that they must overcome. Our work comprises two main components: (1) the system architecture and hardware selected for a fully autonomous agricultural robot platform for automated monitoring and intervention tasks, and (2) the sensor fusion, local planning, and navigation software based on the Robot Operating System (ROS) framework with inclusion of design details and testing results. The challenges faced, solutions tested, and successes achieved with respect to the hardware and software architectures for this robot are presented in the interest of guiding future solutions for autonomous agricultural navigation and planning. We evaluate our approaches in outdoor farm field environments as well as indoor environments serving as an analogue for greenhouse navigation, and show how the properties of the environment affect the accuracy of the mapping and localisation tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bechar, A., Vigneault, C.: Agricultural robots for field operations: concepts and components. Biosyst. Eng. 149, 94–111 (2016)

    Article  Google Scholar 

  2. Hossein, M.: A techincal review on navigation systems of agricultural autonomous off road vehicles. J. Terramechanics 50, 211–232 (2013)

    Google Scholar 

  3. King, A.: Technology: the future of agriculture. Nature 544, 21–23 (2017)

    Article  Google Scholar 

  4. Roßmann, J., Schluse, M., Schlette, C., Bücken, A., Krahwinkler, P., Emde, M.: Realization of a highly accurate mobile robot system for multi purpose precision forestry applications. In: The 14th International Conference on Advanced Robotics, pp. 133–138 (2009)

    Google Scholar 

  5. Krahwinkler, P., Roßmann, J., Sondermann, B.: Support vector machine based decision tree for very high resolution multispectral forest mapping. In: 2011 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2011, Vancouver, BC, Canada, 24–29 July 2011, pp. 43–46 (2011)

    Google Scholar 

  6. Roßmann, J., Jung, T.J., Rast, M.: Developing virtual testbeds for mobile robotic applications in the woods and on the moon. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, 18–22 Oct 2010, Taipei, Taiwan, pp. 4952–4957 (2010)

    Google Scholar 

  7. Katupitiya, J., Eaton, R., Yaqub, T.: Systems engineering approach to agricultural automation: new developments. In: 1st Annual IEEE System Conference, pp. 298–304 (2007)

    Google Scholar 

  8. Cho, S.I., Lee, J.H.: Autonomous speedsprayer using differential global positioning system, genetic algorithm and fuzzy control. J. Agric. Eng. Res. 76, 111–119 (2000)

    Article  Google Scholar 

  9. Blackmore, B.S., Griepentrog, H.W., Nielsen, H., Norremark, M., Resting-Jeppesen, J.: Development of a deterministic autonomous tractor. In: The CIGR International Conference, Beijing, China (2004)

    Google Scholar 

  10. Hague, T., Marchant, J.A., Tillett, N.D.: Ground based sensing systems for autonomous agricultural vehicles. Comput. Electron. Agric. 25, 11–28 (2000)

    Article  Google Scholar 

  11. Subramanian, V., Burks, T.F., Arroyo, A.A.: Development of machine vision and laser radar based autonomous vehicle guidance systems for citrus grove navigation. Comput. Electron. Agric. 53, 130–143 (2006)

    Article  Google Scholar 

  12. Xue, J., Zhang, L., Grift, T.E.: Variable field of view machine vision based row guidance of an agricultural robot. Comput. Electron. Agric. 84, 85–91 (2012)

    Article  Google Scholar 

  13. Jiang, D.W., Yang, L.C., Li, D.H., Gao, F., Tian, L., Li, L.J.: Development of a 3D ego motion estimatioon system for an autonoumous agricultural vehicle. Biosyst. Eng. 121, 150–159 (2014)

    Article  Google Scholar 

  14. Perez, L., Rodrìguez, I., Rodrìguez, N., Usamentiaga, R., Garca, D.F.: Robot guidance using machine vision techniques in industrial environments: a comparative review. Sensors 16, 1–26 (2016)

    Article  Google Scholar 

  15. Bochtis, D.D., Sorensen, C.G., Vougioukas, S.G.: Path planning for in field nagivation aiding of service units. Comput. Electron. Agric. 74, 80–90 (2010)

    Article  Google Scholar 

  16. Hameed, I.A., La Cour-Harbo, A., Osen, O.L.: Side to side 3D coverage path planning approach for agricultural robots to minimize skip/overlap areas between swaths. Robot. Auton. Syst. 76, 36–45 (2016)

    Article  Google Scholar 

  17. Yang, L., Qi, J.T., Song, D.L., Xiao, J.Z., Han, J.D., Xia, Y.: Survey of robot 3D path planning algorithms. J. Control Sci. Eng. (2016)

    Google Scholar 

  18. Bengochea-Guevara, J.M., Conesa-Munoz, J., Andujar, D., Ribeiro, A.: Merge fuzzy visual servoing and GPS based planning to obtain a proper navigation behavior for a small crop inspection robot. Sensors 16 (2016)

    Article  Google Scholar 

  19. Post, M.A., Li, J.Q., Quine, B.M.: Planetary micro-rover operations on mars using a Bayesian framework for inference and control. Acta Astronaut. 120, 295–314 (2016)

    Article  Google Scholar 

  20. Hameed, I.A.: Intelligent coverage path planning for agricultural robots and autonomous machines on three dimensional terrain. J. Intell. Robot. Syst. 74, 965–983 (2014)

    Article  Google Scholar 

  21. Van Henten, E.J., Van Tuijl, B.A.J., Hemming, J., Kornet, J.G., Bontsema, J., Van Os, E.A.: Field test of an autonomous cucumber picking robot. Biosyst. Eng. 86, 305–313 (2003)

    Google Scholar 

  22. Van Henten, E.J., Van Tuijl, B.A.J., Hemming, J., Kornet, J.G., Bontsema, J.: Collision-free motion planning for a cucumber picking robot. Biosyst. Eng. 86, 135–144 (2003)

    Google Scholar 

  23. Van Henten, E.J., Van Tuijl, B.A.J., Hemming, J., Kornet, J.G., Bontsema, J., Van Os, E.A.: An autonomous robot for harvesting cucumbers in greenhouses. Auton. Robots 13, 241–258 (2002)

    Google Scholar 

  24. Hayashi, S., Shigematsu, K., Yamamoto, S., Kobayashi, K., Kohno, Y., Kamata, J., Kurita, M.: Evaluation of a strawberry-harvesting robot in a field test. Biosyst. Eng. 105, 160–171 (2010)

    Article  Google Scholar 

  25. Hayashi, S., Yamamoto, S., Saito, S., Ochiai, Y., Kohno, Y., Yamamoto, K., Kamata, J., Kurita, M.: Development of a movable strawberry-harvesting robot using a travelling platform. In: Proceedings of International Conference on Agricultural Engineering CIGR-AgEng 2012, Valencia, Spain (2012)

    Google Scholar 

  26. Emmi, L., Gonzalez de Soto, M., Pajares, G., Gonzalez de Santos, P.: New trends in robotics for agriculture: integration and assessment of a real fleet of robots. Sci. World J. 21, 1–22 (2014)

    Google Scholar 

  27. Grimstad, L., From, P.J.: The thorvald II agricultural robotic system. Robot. MDPI 6, 1–17 (2017)

    Google Scholar 

  28. Lopes, C.M., Graça, J., Sastre, J., Reyes, M., Guzmán, R., Braga, R., Monteiro, A., Pinto, P.A.: Vineyard yield estimation by vinbot robot - preliminary results with the white variety viosinho. In: Jones, G., Doran, N. (eds.) 11th International Terroir Congress. Southern Oregon University, Ashland, USA, pp. 458–463 (2016)

    Google Scholar 

  29. Hajjaj, S.S.H., Sahari, K.S.M.: Bringing ROS to agriculture automation: hardware abstraction of agriculture machinery. Int. J. Appl. Eng. Res. 12, 311–316 (2017)

    Google Scholar 

  30. Jensen, K., Larsen, M., Nielsen, S.H., Larsen, L.B., Olsen, K., Jøgensen, R.N.: Towards an open software platform for field robots in precision agriculture. Robotics 13, 207–234 (2014)

    Article  Google Scholar 

  31. Post, M., Bianco, A., Yan, X.T.: Autonomous navigation with ROS for a mobile robot in agricultural fields. In: 14th International Conference on Informatics in Control, Madrid, Spain, pp. 1–10 (2017)

    Google Scholar 

  32. Kohlbrecher, S., Meyer, J., von Stryk, O., Klingauf, U.: A flexible and scalable slam system with full 3D motion estimation. In: Proceedings of IEEE International Symposium on Safety, Security and Rescue Robotics (SSRR). IEEE (2011)

    Google Scholar 

  33. Moore, T., Stouch, D.: A generalized extended Kalman filter implementation for the robot operating system. In: Proceedings of the 13th International Conference on Intelligent Autonomous Systems (IAS-13). Springer, Berlin (2015)

    Google Scholar 

  34. Labbé, M., Michaud, F.: Online global loop closure detection for large-scale multi-session graph-based SLAM. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, IL, USA, 14–18 Sept 2014, pp. 2661–2666 (2014)

    Google Scholar 

Download references

Acknowledgement

This work was made possible and supported by grants from the Science and Technology Facilities Council Newton Fund. The authors gratefully acknowledge the work of the Rutherford Appleton Laboratories (RAL) Autonomous Systems Group for the design and construction of the mechanical platform for the robot, the James Hutton Institute for providing field test facilities in support of this research, and the work of Jonathan Watson, Giacomo Corvi, Kyle Burnett, Jennifer Miller, and Finlay Harris on setting up and testing RTAB-Map algorithms in ROS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. Post .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Post, M.A., Bianco, A., Yan, X.T. (2020). Autonomous Navigation with Open Software Platform for Field Robots. In: Gusikhin, O., Madani, K. (eds) Informatics in Control, Automation and Robotics . ICINCO 2017. Lecture Notes in Electrical Engineering, vol 495. Springer, Cham. https://doi.org/10.1007/978-3-030-11292-9_22

Download citation

Publish with us

Policies and ethics