Skip to main content

The Structure of Metals and Alloys

  • Chapter
  • First Online:
Metallography in Archaeology and Art

Part of the book series: Cultural Heritage Science ((CUHESC))

  • 1384 Accesses

Abstract

The properties of metals and alloys are dependent on their atomic structure. Metals are an aggregation of atoms that, apart from mercury, are solid at room temperature. These atoms are held together by “metallic bonds” that result from sharing available electrons. A negative electron bond pervades the structure, and heat and electricity can be conducted through the metal by the free movement of electrons. The atoms are regularly arranged, forming a symmetrical three-dimensional group, which repeats itself periodically and which is called a unit cell. Unit cells of identical characteristics form a crystal with regular spatial distribution of atoms, which can be defined by a space lattice. Atoms can be stacked in different ways to create a variety of simple lattice types. There are three common types of lattice structure that most metals belong to (Fig. 4.1): face-centred cubic (fcc), body-centred cubic (bcc) and close-packed hexagonal (cph).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bachmann, H.-G.: The Identification of Slags from Archaeological Sites Institute of Archaeology Occasional Publication No. 6. Institute of Archaeology, London (1982)

    Google Scholar 

  2. Bhadeshia, H.K.D.H.: Bainite in Steels, 2nd edn. IOM Communications Ltd, London (2001)

    Google Scholar 

  3. Bhadeshia: Physical metallurgy of steels. In: Laughlin, D., Hono, K. (eds.) Physical Metallurgy III, 5th edn, pp. 2157–2214. Elsevier, Amsterdam et al. (2014)

    Chapter  Google Scholar 

  4. Barrena, M.I., Gómez de Salazar, J.M., Soria, S.A.: Corrosion of brass archaeological blinker: characterisation of natural degradation process. Mater. Lett. 62(24), 3944–3946 (2008)

    Article  CAS  Google Scholar 

  5. Barrett, C.S., Massalski, T.B.: Structure of Metals: Crystallographic Methods, Principles and Data, International Series on Materials Science and Technology 35, 3rd rev edn. Pergamon, Oxford/New York/Seoul/Tokyo (1993)

    Google Scholar 

  6. Biborski, M., Kaczanowski, P., Kedzierski, Z., Stepinski, J.: Ergebnisse der metallographischen Untersuchungen römischen Schwertern aus dem Vindonissa-Museum Brugg und dem Römermuseum Augst, Jahresbericht 1985 der Gesellschaft Pro Vindonissa, pp. 45–80 (1985)

    Google Scholar 

  7. Breeks, J.W.: An Account of the Primitive Tribes and Monuments of the Nilagiris. Allen, London (1873)

    Google Scholar 

  8. Brüggler, M., Dirsch, C., Drechsler, M., Schwab, R., Willer, F.: Ein römischer Schienenarmschutz aus dem Auxiliarlager Till-Steincheshof und die Messingherstellung in der römischen Kaiserzeit. Bonner Jahrbücher. 212, 121–152 (2012)

    Google Scholar 

  9. Buchwald, V.F.: Handbook of Iron Meteorites 1–3. University of California Press, Berkeley (1975)

    Google Scholar 

  10. Buchwald, V.F.: Ancient Iron and Slags in Greenland. Meddelelser om Grønland, Man & Society 26. Danish Polar Center, Copenhagen (2001)

    Google Scholar 

  11. Buchwald, V.F.: Iron and Steel in Ancient Times. Historisk-filosofiske Skrifter 29. Det Kongelige Danske Videnskabernes Selskab, Copenhagen (2005)

    Google Scholar 

  12. Buchwald, V.F.: Iron, Steel and Cast Iron before Bessemer. Historisk-filosofiske Skrifter 32. Det Kongelige Danske Videnskabernes Selskab, Copenhagen (2008)

    Google Scholar 

  13. Buchwald, V.F., Wivel, H.: Slag analysis as a method for characterization and provenancing of iron objects. Mater. Charact. 40, 73–96 (1998)

    Article  CAS  Google Scholar 

  14. Budd, P.: Alloying and metalworking in the Copper Age of Central Europe. Bull. Met. Mus. 17, 3–14 (1992)

    Google Scholar 

  15. Cellini, B.: The Treatises of Benvenuto Cellini on Goldsmithing and Sculpture. Trans. C.R. Ashbee, Dover, New York (1967)

    Google Scholar 

  16. Chadwick, R.: The effect of composition and constitution on the working and some physical properties of the tin bronzes. J. Inst. Met. 64, 331–346 (1939)

    Google Scholar 

  17. Chang, Y.A., Neumann, J.P., Mikula, A., Goldberg, D.: Phase Diagrams and Thermodynamic Properties of Ternary Copper-Metal Systems. International Copper Research Association Series on the Metallurgy of Copper 6. NSRD, Washington, DC (1979)

    Google Scholar 

  18. Cope, L.H.: The metallurgical analysis of Roman Imperial silver and aes coinage. In: Hall, E.T., Metcalf, D.M. (eds.) Methods of Chemical and Metallurgical Investigation of Ancient Coinage Royal Numismatic Society Special Publication 8, pp. 3–47. Royal Numismatic Society, London (1972)

    Google Scholar 

  19. Coustures, M.P., Béziat, D., Tollon, F., Domergue, C., Long, L., Rebiscoul, A.: The use of trace element analysis of entrapped slag inclusions to establish ore – bar iron links: examples from two Gallo-Roman iron-making sites in France (Les Martys, Montagne noire, and les Ferrys, Loiret). Archaeometry. 45, 599–613 (2003)

    Article  CAS  Google Scholar 

  20. Cowley, J.M.: X-ray measurement of order in single crystals of Cu3Au. J. Appl. Phys. 21(1), 24–30 (1950)

    Google Scholar 

  21. Craddock, P.T.: Early metal mining and production. Edinburgh University Press, Edinburgh (1995)

    Google Scholar 

  22. Craddock, P.T., Meeks, N.D.: Iron in ancient copper. Archaeometry. 29(2), 187–204 (1987)

    Article  CAS  Google Scholar 

  23. Davenport, E.S., Bain, E.C.: Transformation of austenite at constant subcritical temperatures. Trans. Am. Inst. Min. Metall. Eng. 90, 117–144 (1930)

    Google Scholar 

  24. Davis, J.R. (ed.): ASM Specialty Handbook: Copper and Copper Alloys. ASM International, Materials Park (2008)

    Google Scholar 

  25. Dieudonné-Glad, N., Parisot, J.: Etude métallographique d‘épées celtiques et romaines du musée Denon à Châlon-sur-Saône. In: Nicolini, G., Dieudonne-Glad, N. (eds.) Les métaux antiques: travail et restauration. Monographies Instrumentum 6, pp. 153–163. Monique Mergoil, Montagnac (1998)

    Google Scholar 

  26. Dillmann, P., L’Héritier, M.: Slag inclusion analyses for studying ferrous alloys employed in French medieval buildings: supply of materials and diffusion of smelting processes. J. Archaeol. Sci. 34, 1810–1823 (2007)

    Article  Google Scholar 

  27. Dillmann, P., Schwab, R., Bauvais, S., Brauns, M., Disser, A., Leroy, S., Gassmann, G., Fluzin, P.: Circulation of iron products in the North-Alpine area during the end of the First Iron Age (6th–5th c. BC): a combination of chemical and isotopic approaches. J. Archaeol. Sci. 87, 108–124 (2017)

    Article  CAS  Google Scholar 

  28. Dövener, F., Schwab, R., Willer, F.: Kleine Zeugnisse einstiger Größe – Vier Bronzestatuen-Fragmente aus Luxemburg. Archaeologia Luxemburgensis. 4, 141–160 (2018)

    Google Scholar 

  29. Dungworth, D.: Serendipity in the foundry? Tin oxide inclusions in copper and copper alloys as an indicator of production process. Bull. Met. Mus. 32, 1–5 (2000)

    CAS  Google Scholar 

  30. English, A.T., Chin, G.Y., Wonsiewicz, B.C.: Structures resulting from plastic deformation. In: Lyman, T. (ed.) Metallography, Structures and Phase Diagrams ASM Handbook 8, pp. 211–216. American Society for Metals, Metals Park (1973)

    Google Scholar 

  31. Glover, I., Bennett, A.: The high-tin bronzes of Thailand. In: Jett, P. (ed.) Scientific Research on Ancient Asian Metallurgy: Proceedings of the Fifth Forbes Symposium at the Freer Gallery of Art, pp. 101–114. Archetype, London (2012)

    Google Scholar 

  32. Goodway, M., Conklin, H.C.: Quenched high-tin bronzes from the Philippines. Archeomaterials. 2, 1–27 (1987)

    CAS  Google Scholar 

  33. Graf, L.: The causes and mechanism of stress-corrosion cracking of homogeneous non-supersaturated alloys as derived from experimental work with alloys containing noble metal components. In: Scully, J.C. (ed.) The Theory of Stress-Corrosion Cracking in Alloys: Research Evaluation Conference Held at Ericeira, Portugal over the Period 29 March to 2 April 1971, pp. 399–341. NATO Scientific Affairs Division, Brussels (1971)

    Google Scholar 

  34. Hanson, D., Pell-Walpole, W.T.: Chill-Cast Tin Bronzes. Edward Arnold, London (1951)

    Google Scholar 

  35. Hansen, M., Anderko, K.: Constitution of Binary Alloys. McGraw-Hill, New York/Toronto/London (1958)

    Book  Google Scholar 

  36. Hansen, N., Barlow, C.Y.: Plastic deformation of metals and alloys. In: Laughlin, D.E., Hono, K. (eds.) Physical Metallurgy II, 5th edn, pp. 1681–1764. Elsevier, Amsterdam et al. (2014)

    Chapter  Google Scholar 

  37. Hauptmann, A., Maddin, R., Prange, M.: On the structure and composition of copper and tin ingots excavated from the shipwreck of Uluburun. Bull. Am. Sch. Orient. Res. 328, 1–30 (2002)

    Article  Google Scholar 

  38. Horstmann, D.: Metallkundliche Untersuchungen an Klingen von zwei römischen Dolchen Ausgrabungen und Funde in Westfalen-Lippe 9/B, pp. 111–135 (1995)

    Google Scholar 

  39. Hillert, M. (ed.): Viewpoint set No. 25 “bainite”. Scr. Mater. 47, 137–212 (2002)

    Google Scholar 

  40. Hultgren, R., Tarnapol, L.: The effect of silver on the gold-copper superlattice Au-Cu. Trans. Am. Inst. Min. Metall. Eng. 33, 228–237 (1939)

    Google Scholar 

  41. Hume-Rothery, W., Raynor, G.V.: The Structure of Metals and Alloys. Institute of Metals Monograph and Report Series 1. The Institute of Metals, London (1956)

    Google Scholar 

  42. Illescas, F.J., Asensio, J., Guilemany, J.M.: TEM study of bainitic low-carbon HSLA steel: the orientation relationships of cementite. Pract. Metall. 44(6), 334–346 (2007)

    Article  CAS  Google Scholar 

  43. Ingo, G.M., de Caro, T., Bultrini, G.: Microchemical investigation of archaeological copper based artefacts disclosing an ancient witness of the transition from the value of the substance to the value of the appearance. Microchim. Acta. 144(1), 87–95 (2004)

    Article  CAS  Google Scholar 

  44. Johansson, C.H., Linde, J.O.: J.O.: Röntgenographische und elektrische Untersuchungen des CuAu-Systems. Ann. Phys. 417(1), 1–48 (1936)

    Article  Google Scholar 

  45. Juleff, J.: X-ray diffraction studies of gold. Unpublished BSc thesis, Institute of Archaeology, London (1981)

    Google Scholar 

  46. Kallfass, M., Paul, J., Jehn, H.: Investigations on the embrittlement of an antique Roman silver bowl. Practical Metallogr. 2, 317–323 (1985)

    Google Scholar 

  47. Karakaya, I., Thompson, W.T.: The Ag-Sn (silver-tin) system. Bull. Alloy Phase Diagr. 8(4), 340–347 (1987)

    Article  CAS  Google Scholar 

  48. Kastowsky, K., Mehofer, M.: Metallographische Analysen an den kaiserzeitlichen Depots aus Mannersdorf am Leithagebirge. In: Pollak, M. (ed.) Stellmacherei und Landwirtschaft: zwei römische Materialhorte aus Mannersdorf am Leithagebirge, Niederösterreich. Fundberichte aus Österreich Materialhefte A 16, pp. 55–65. Berger, Wien (2006)

    Google Scholar 

  49. Kienlin, T.L.: Traditions and transformations: approaches to eneolithic (Copper Age) and Bronze Age metalworking and society in Eastern Central Europe and the Carpathian Basin. British Archaeological Reports International Series 2184. Archaeopress, Oxford (2010)

    Google Scholar 

  50. Kiessling, R.: Non-metallic Inclusions in Steel III: The Origin and Behaviour of Inclusions and their Influence on the Properties of Steels. Percy Lund, London (1968)

    Google Scholar 

  51. Krauss, G.: Steels: Heat Treatment and Processing Principles. ASM International, Materials Park (2000)

    Google Scholar 

  52. Kuczynski, G.C., Hochman, R.F., Doyama, M.: Isothermal transformations in CuAu. J. Appl. Phys. 26, 871–874 (1955)

    Article  CAS  Google Scholar 

  53. Lang, J., Williams, A.R.: The hardening of iron swords. J. Archaeol. Sci. 2, 199–207 (1975)

    Article  CAS  Google Scholar 

  54. La Niece, S.: Metallography in numismatics. In: Oddy, A., Cowell, M. (eds.) Metallurgy in Numismatics 4, Royal Numismatic Society Special Publication 30, pp. 114–133. Royal Numismatic Society, London (1998)

    Google Scholar 

  55. Lechtman, H.: Traditions and styles in central Andean metalwork. In: Maddin, R. (ed.) The Beginning of the Use of Metals and Alloys (BUMA I), pp. 344–378. MIT Press, Cambridge, MA (1988)

    Google Scholar 

  56. Lehner, J.W., Schwab, R., Pernicka, E., Schachner, A.: Cupronickel and the rise of the Hittite State: metallurgical investigations of Late Bronze Age copper alloys at Boğazköy-Hattuša (forthcoming)

    Google Scholar 

  57. Liu, K.H., Chan, H., Notis, M.R., Pigott, V.S.: Analytical electron microscopy of early steel from the Bacqah Valley, Jordan. In: Romig Jr., A.D., Goldstein, J.I. (eds.) Microbeam Analysis-1984, pp. 261–263. San Francisco Press, San Francisco (1984)

    Google Scholar 

  58. Lutz, J., Schwab, R.: The Early Iron Age hoard from Fliess in Tyrol and ore resources in the Eastern Alps. In: Pernicka, E., Schwab, R. (eds.) Under the Volcano. Forschungen zur Archäometrie und Altertumswissenschaft 5, pp. 25–34. M. Leidorf, Rahden/Westf (2014)

    Google Scholar 

  59. Lychatz, B.: Die Metallurgie des Rennverfahrens. Freiberger Forschungshefte D 245. Technische Universität Bergakademie Freiberg, Freiberg (2013)

    Google Scholar 

  60. Maddin, R.: A history of martensite: some thoughts on the early hardening of iron. In: Olson, G.B., Owen, W.S. (eds.) Martensite: A Tribute to Morris Cohen, pp. 11–19. ASM International, Materials Park (1992)

    Google Scholar 

  61. Maddin, R., Hauptmann, A., Baatz, D.: A metallographic examination of some iron tools from the Saalburgmuseum. Saalburg Jahrbuch. 46, 5–23 (1991)

    Google Scholar 

  62. Marshall, J.: Taxila: An Illustrated Account of Archaeological Excavations Carried Out at Taxila Under the Orders of the Government of India Between the Years 1913 and 1934, vol. 1–3. Cambridge University Press, Cambridge (1951)

    Google Scholar 

  63. Massalski, T.B. (ed.): Binary alloy phase diagrams 1–2, Ohio. American Society of Metals, Materials Park (1986)

    Google Scholar 

  64. Matteoli, L., Storti, C.: Metallographic research on four pure copper axes and one related metallic block from Eneolithic Italian cave. J. Hist. Metall. Soc. 16(2), 65–69 (1982)

    CAS  Google Scholar 

  65. Meeks, N.D., Tite, M.S.: The analysis of platinum-group element inclusions in gold antiquities. J. Archaeol. Sci. 7(3), 267–275 (1980)

    Article  CAS  Google Scholar 

  66. McDonald, A.S., Sistare, G.H.: The metallurgy of some carat gold jewellery alloys. Part I – coloured gold alloys. Gold Bull. 11, 66–73 (1978)

    Article  CAS  Google Scholar 

  67. McMullin, J.F., Norton, J.T.: On the structure of gold-silver-copper alloys. Trans. Am. Inst. Min. Metall. Eng. 33, 228–237 (1949)

    Google Scholar 

  68. Marshall, J.: Taxila, 3 vols. Cambridge University Press, Cambridge (1951)

    Google Scholar 

  69. Masing, G., Kloiber, K.: Ausscheidungsvorgänge im System Kupfer-Silber-Gold. Z. Met. 32, 125–132 (1940)

    CAS  Google Scholar 

  70. Melikian-Chirvani, A.S.: The white bronzes of early Islamic Iran. Metrop. Mus. J. 9, 123–151 (1974)

    Google Scholar 

  71. Michalak, J.T.: Plastic deformation structures in iron and steel. In: Lyman, T. (ed.) Metallography, Structures and Phase Diagrams ASM Handbook 8, pp. 218–220. American Society for Metals, Metals Park (1973)

    Google Scholar 

  72. Mizutani, U., et al.: Electron theory of complex metallic alloys. In: Laughlin, D.E., Hono, K. (eds.) Physical Metallurgy I, 5th edn, pp. 103–202. Elsevier, Amsterdam et al (2014)

    Chapter  Google Scholar 

  73. Northover, J.P.: The exploration of long-distance movement of bronze in Bronze and early Iron Age Europe. Bull. Inst. Archaeol. Univ. Lond. 19, 45–72 (1982)

    Google Scholar 

  74. Northover, J.P.: Exotic alloys in antiquity. In: Rehren, T., Hauptmann, A., Muhly, J.D. (eds.) Metallurgica Antiqua. In Honour of Hans-Gert Bachmann and Robert Maddin. Der Anschnitt Beiheft 8, pp. 113–121. Deutsches Bergbau-Museum, Bochum (1998)

    Google Scholar 

  75. Northover, P.: Copper in the Industrial Age. In: Degrigny, C., van Langh, R., Joosten, I., Ankersmit, B. (eds.) METAL 07, vol. 1, pp. 83–90. Elsevier, Amsterdam (2007)

    Google Scholar 

  76. Notis, M.R., Shugar, A.N.: Roman shears: metallography, composition and historical approach to investigation. In: Archaeometallurgy in Europe 1, pp. 109–118. AIM, Milan (2003)

    Google Scholar 

  77. Odgen, J.: The technology of Medieval jewellery. In: Scott, D.A., Podany, J., Considine, B.B. (eds.) Ancient & Historic Metals – Conservation and Scientific Research, pp. 153–182. National Museum of Singapore, Singapore (1994)

    Google Scholar 

  78. Park, J.S., Park, C.W., Lee, K.J.: Implication of peritectic composition in historical high-tin bronze metallurgy. Mater. Charact. 60(11), 1268–1275 (2009)

    Article  CAS  Google Scholar 

  79. Pleiner, R.: Zur Schmiedetechnik im römerzeitlichen Bayern. Bayerische Vorgeschichtsblätter. 35, 113–140 (1970)

    Google Scholar 

  80. Pleiner, R.: The Celtic Sword. Clarendon Press, Oxford (1993)

    Google Scholar 

  81. Pleiner, R.: Iron in Archaeology: The European Bloomery Smelters. Archeologicky Ústav Avcr, Praha (2000)

    Google Scholar 

  82. Pleiner, R.: Iron in Archaeology: Early European Blacksmiths. Archeologicky Ústav Avcr, Praha (2006)

    Google Scholar 

  83. Pliny the Elder: Natural History, 10 vols, trans. H. Rackham. Harvard University Press/William Heinemann, Cambridge/Harvard/London (1979)

    Google Scholar 

  84. Pryce, O., Murillo-Barroso, M., Bellina, B., Martinón-Torres, M.: Khao Sam Kaeo – an archaeometallurgical crossroads for trans-Asiatic technological traditions. In: Srinivasan, S., Ranganathan, S., Giumlia-Mair, A. (eds.) Metals and Civilizations, Proceedings of the International Conference, Beginning of the Use of Metals and Alloys, BUMA VII, Bangalore September 2009, Bangalore, pp. 33–46 (2015)

    Google Scholar 

  85. Rajpitak, W., Seeley, N.: The bronze bowls from Ban Don Ta Phet: an enigma of prehistoric metallurgy. World Archaeol. 11(1), 26–31 (1979)

    Article  Google Scholar 

  86. Rapson, W.S., Groenewald, T.: Gold Usage. Academic, London (1978)

    Google Scholar 

  87. Ravich, I.G.: Study of the composition of Scythian and Sarmatian bronze mirrors and technologies of their manufacture. Bull. Met. Mus. 16, 20–31 (1991)

    Google Scholar 

  88. Ravich, I.G., Ryndina, N.V.: Early copper-arsenic alloys and the problems of their use in the Bronze Age of the North Caucasus. Bull. Met. Mus. 23, 1–18 (1995)

    CAS  Google Scholar 

  89. Reeve, M.R., Bowden, J.S., Cuthbertson, J.W.: A report on the microstructure of tin bronzes containing 15–28% tin. Part One. Met. Ind. 78, 23–25 (1953)

    Google Scholar 

  90. Reeve, M.R., Bowden, J.S., Cuthbertson, J.W.: A report on the microstructure of tin bronzes containing 15-28% tin. Part Two. Met. Ind. 78, 49–52 (1953)

    Google Scholar 

  91. Rehren, T., Northover, J.P.: Selenium and tellurium in ancient copper ingots. In: Pernicka, E., Wagner, G.A. (eds.) Archaeometry ‘90, pp. 221–228. Birkhäuser, Basel/Boston/Berlin (1991)

    Google Scholar 

  92. Rhines, F.N., Bond, W.E., Rummel, R.A.: Constitution of ordering alloys of the system gold-copper. Trans. Am. Soc. Met. 47, 578–597 (1955)

    Google Scholar 

  93. Roberts-Austen, W.C., Rose, K.T.: On certain properties of the alloys of the gold-copper series. Proc. R. Soc. Lond. 67(435–441), 105–112 (1901)

    Google Scholar 

  94. Rodney, D., Bonneville, J.: Dislocations. In: Laughlin, D.E., Hono, K. (eds.) Physical Metallurgy II, 5th edn, pp. 1591–1680. Elsevier, Amsterdam et al (2014)

    Chapter  Google Scholar 

  95. Root, W.C.: Gold-copper alloys in ancient America. J. Chem. Educ. 28(2), 76–78 (1951)

    Article  CAS  Google Scholar 

  96. Rostoker, W., Bronson, B.: Pre-industrial Iron. Archeomaterials Monograph 1. Archeomaterials, Philadelphia (1990)

    Google Scholar 

  97. Samuels, L.E.: Optical Microscopy of Carbon Steels. American Society for Metals, Metals Park (1980)

    Google Scholar 

  98. Saunders, N., Miodownik, A.P.: The Cu-Sn (copper-tin) system. Bull. Alloy Phase Diagr. 11(3), 278–287 (1990)

    Article  CAS  Google Scholar 

  99. Schaaber, O.: Beiträge zur Frage des Norischen Eisens. Metallkundliche Grundlagen und Untersuchungen an Funden vom Magdalensberg. Carinthia I, 153, pp. 129–279 (1963)

    Google Scholar 

  100. Schwab, R.: Untersuchungen zur Technologie und Herkunft eiserner Werkzeuge und Waffen. In: Sievers, S., Leicht, M., Ziegaus, B. (eds.) Ergebnisse der Ausgrabungen 1996–1999 in Manching-Altenfeld Die Ausgrabungen in Manching 18, pp. 251–293. Reichert Verlag, Wiesbaden (2013)

    Google Scholar 

  101. Scott, R.E.: New complex phase in the copper-gold system. J. Appl. Phys. 31(12), 2112–2117 (1960)

    Article  CAS  Google Scholar 

  102. Scott, D.A.: Pre-Hispanic Colombian metallurgy: studies of some gold and platinum alloys. PhD thesis, Institute of Archaeology, University of London (1982)

    Google Scholar 

  103. Scott, D.A.: Metallography and microstructure of ancient and historic metals, Getty conservation institute, J. Paul Getty Museum, Malibu (1991)

    Google Scholar 

  104. Scott, D.A.: Ancient Metals: Microstructure and Metallurgy 1. Conservation Science Press, Los Angeles (2011)

    Google Scholar 

  105. Senn Bischofberger, M.: Das Schmiedehandwerk im nordalpinen Raum von der Eisenzeit bis ins frühe Mittelalter. Internationale Archäologie – Naturwissenschaft und Technologie 5. Verlag Marie Leidorf, Rahden (2005)

    Google Scholar 

  106. Shalev, S., Northover, J.P.: The metallurgy of the Nahal Mishmar hoard reconsidered. Archaeometry. 35(1), 35–47 (1993)

    Article  Google Scholar 

  107. Shim, J.H., Oh, C.S., Lee, B.J., Lee, D.N.: Thermodynamic assessment of the Cu-Sn system. Z. Met. 87, 205–212 (1996)

    CAS  Google Scholar 

  108. Smith, C.S.: A History of Metallography. The University of Chicago Press, Chicago (1960)

    Google Scholar 

  109. Smith, C.S.: Bronze technology in the east: a metallurgical study of early Thai bronzes. In: Teich, M., Young, R. (eds.) Changing Perspectives in the History of Science: Essays in Honour of Joseph Needham, pp. 21–32. Heinemann, London (1973)

    Google Scholar 

  110. Smith, R., Bowles, J.S.: The crystallography of the cubic to orthorhombic transformation in the alloy AuCu. Acta Metall. 8(7), 405–415 (1960)

    Article  CAS  Google Scholar 

  111. Srinivasan, S.: The use of tin and bronze in prehistoric southern Indian metallurgy. J. Met. 50(7), 44–48 (1998)

    Article  Google Scholar 

  112. Srinivasan, S., Glover, I.: Wrought and quenched, and cast high-tin bronzes in Kerala State, India. Hist. Metall. 29(2), 69–88 (1995)

    CAS  Google Scholar 

  113. Srinivasan, S., Glover, I.: Skilled mirror craft of intermetallic delta high-tin bronze (Cu31Sn8, 32.6% tin) from Aranmula, Kerala. Curr. Sci. 93(1), 35–40 (2007)

    CAS  Google Scholar 

  114. Sterner-Rainer, L.: Die Verbindung Au-Cu in Goldlegierungen. Z. Met. 17, 162–165 (1925)

    CAS  Google Scholar 

  115. Sterner-Rainer, L.: Die Edelmetall-Legierungen in Industrie und Gewerbe. Verlag Wihelm Diebener, Leipzig (1930)

    Google Scholar 

  116. Steurer, W.: Crystal structures of metallic elements and compounds. In: Laughlin, D.E., Hono, K. (eds.) Physical Metallurgy I, 5th edn, pp. 1–101. Elsevier, Amsterdam et al (2014)

    Google Scholar 

  117. Stöllner, T., Oeggl, K. (eds.): Bergauf Bergab – 10.000 Jahre Bergbau in den Ostalpen. Veröffentlichung aus dem Deutschen Bergbau-Museum Bochum 207. Verlag Marie Leidorf, Bochum (2015)

    Google Scholar 

  118. Stöllner, T., Schwab, R.: Hart oder weich? Worauf es ankommt! Pickel aus dem prähistorischen Bergbau in den Ostalpen. Festschrift Fritz Eckart Barth, Mitteilungen der Anthropologischen Gesellschaft in Wien. 139, 149–166 (2009)

    Google Scholar 

  119. Tadmor, M., Kedem, D., Begemann, F., Hauptmann, A., Pernicka, E., Schmitt-Strecker, S.: The Naḥal Mishmar hoard from the Judean Desert: technology, composition, and provenance. Atiqot. 27, 95–148 (1995)

    Google Scholar 

  120. Tamalameque. Averiguaciones en Tamalameque sobre los manyllas que Mando Hazer Juan de Azpeleta a los Yndios de su Encomienda de Anpihuegas. Justicia, Legajo 610–612, folios 2520–25 (manuscript) Archivo General de Indias, Seville. Trans in Museo del Oro Archives, Bogota, Colombia (1555)

    Google Scholar 

  121. Uran, L.: Observations métallographiques sur les épées celtiques en fer. Revue Aquitania Supplément. 1, 299–308 (1986)

    Google Scholar 

  122. Vander Voort, G.F.: Metallography, Principles and Practice. McGraw-Hill, New York (1984)

    Google Scholar 

  123. Voce, E.: Examination of specimens from the Pitt Rivers Museum. In: Coghlan, H.H. (ed.) Notes on the Prehistoric Metallurgy of Copper and Bronze in the Old World. Pitt Rivers Museum Occasional Papers on Technology 4, pp. 110–111. University Press, Oxford (1951)

    Google Scholar 

  124. Wanhill, R.J.H., Steijaart, J.P.H.M., Leenheer, R., Koens, J.F.W.: Damage assessment and preservation of an Egyptian silver vase (300–200 BC). Archaeometry. 40(1), 123–137 (1998)

    Article  CAS  Google Scholar 

  125. Wayman, M.L., Duke, M.J.M.: The effects of melting on native copper. In: Hauptmann, A., Pernicka, E., Rehren, T., Yalçın, Ü. (eds.) The Beginnings of Metallurgy. Der Anschnitt Beiheft 9, pp. 55–63. Deutsches Bergbau-Museum, Bochum (1999)

    Google Scholar 

  126. Weast, R.C. (ed.): The CRC Handbook of Chemistry and Physics, 59th edn. CRC Press, Boca Raton (1978)

    Google Scholar 

  127. Weins, W.N., Bleed, P.: Why is the Japanese sword curved? MRS Proc. 185(p), 691–698 (1990)

    Article  Google Scholar 

  128. Wheeler, T.S., Maddin, R.: The techniques of the early Thai metalsmith. Expedition. 18(4), 38–47 (1976)

    Google Scholar 

  129. Willer, F., Schwab, R., Mirschenz, M.: Römische Bronzestatuen am Limes: Archäometrische Untersuchungen zur Herstellungstechnik. Bonner Jahrbücher. 216, 57–207 (2017)

    Google Scholar 

  130. Wise, E.M.: Gold: Recovery, Properties, and Applications. Van Nostrand Company, Toronto/New York/London (1964)

    Google Scholar 

  131. Zhang, Y.M., Yang, S., Evans, J.R.G.: Revisiting Hume-Rothery’s rules with artificial neural networks. Acta Mater. 56(5), 1094–1105 (2008)

    Article  CAS  Google Scholar 

  132. Zwicker, U.: Archaeometallurgical investigation on the copper – and copper-alloy-production in the area of the Mediterranean Sea (7000–1000 B.C.). Bull. Met. Mus. 15, 3–32 (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Scott, D.A., Schwab, R. (2019). The Structure of Metals and Alloys. In: Metallography in Archaeology and Art. Cultural Heritage Science. Springer, Cham. https://doi.org/10.1007/978-3-030-11265-3_4

Download citation

Publish with us

Policies and ethics