Skip to main content

The Scalability Analysis of a Parallel Tree Search Algorithm

  • Conference paper
  • First Online:
Optimization and Applications (OPTIMA 2018)

Abstract

Increasing the number of computational cores is a primary way of achieving high performance of contemporary supercomputers. However, developing parallel applications capable to harness the enormous amount of cores is a challenging task. Thus, studying the scalability of parallel algorithms (the growth order of the number of processors required to accommodate the growing amount of work, below we give a clear definition of the scalability investigated in our paper) is very important. In this paper we propose a parallel tree search algorithm aimed at distributed parallel computers. For this parallel algorithm, we perform a theoretical analysis of its scalability and show that the achieved scalability is close to the theoretical maximum.

This work is supported by the program of RAS No. 26 “Fundamental basis of algorithms and software for perspective ultra-high-performance computing” and by the Russian Foundation for Basic Research, project 18-07-00566.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    By the length of a path we mean the number of edges contained in the path.

References

  1. Baldwin, A., Asaithambi, A.: An efficient method for parallel interval global optimization. In: 2011 International Conference on High Performance Computing and Simulation (HPCS), pp. 317–321. IEEE (2011)

    Google Scholar 

  2. Barkalov, K., Gergel, V.: Parallel global optimization on GPU. J. Global Optim. 66(1), 3–20 (2016)

    Article  MathSciNet  Google Scholar 

  3. Bhatt, S., Greenberg, D., Leighton, T., Liu, P.: Tight bounds for on-line tree embeddings. SIAM J. Comput. 29(2), 474–491 (1999)

    Article  MathSciNet  Google Scholar 

  4. Casado, L.G., Martinez, J., García, I., Hendrix, E.M.: Branch-and-bound interval global optimization on shared memory multiprocessors. Optim. Methods Softw. 23(5), 689–701 (2008)

    Article  MathSciNet  Google Scholar 

  5. Eckstein, J., Phillips, C.A., Hart, W.E.: Pico: an object-oriented framework for parallel branch and bound. Stud. Comput. Math. 8, 219–265 (2001)

    Article  MathSciNet  Google Scholar 

  6. Evtushenko, Y., Posypkin, M., Rybak, L., Turkin, A.: Approximating a solution set of nonlinear inequalities. J. Global Optim. 71(1), 129–145 (2018)

    Article  MathSciNet  Google Scholar 

  7. Evtushenko, Y., Posypkin, M., Sigal, I.: A framework for parallel large-scale global optimization. Comput. Sci. Res. Dev. 23(3–4), 211–215 (2009)

    Article  Google Scholar 

  8. Gergel, V., Sergeyev, Y.D.: Sequential and parallel algorithms for global minimizing functions with Lipschitzian derivatives. Comput. Math. Appl. 37(4–5), 163–179 (1999)

    Article  MathSciNet  Google Scholar 

  9. Gmys, J., Leroy, R., Mezmaz, M., Melab, N., Tuyttens, D.: Work stealing with private integer-vector-matrix data structure for multi-core branch-and-bound algorithms. Concurr. Comput. Pract. Exp. 28(18), 4463–4484 (2016)

    Article  Google Scholar 

  10. Grama, A., Kumar, V., Gupta, A., Karypis, G.: Introduction to Parallel Computing. Pearson Education, Upper Saddle River (2003)

    MATH  Google Scholar 

  11. Herley, K.T., Pietracaprina, A., Pucci, G.: Deterministic parallel backtrack search. Theor. Comput. Sci. 270(1–2), 309–324 (2002)

    Article  MathSciNet  Google Scholar 

  12. Karp, R.M., Zhang, Y.: Randomized parallel algorithms for backtrack search and branch-and-bound computation. J. ACM (JACM) 40(3), 765–789 (1993)

    Article  MathSciNet  Google Scholar 

  13. Kolpakov, R., Posypkin, M.: Estimating the computational complexity of one variant of parallel realization of the branch-and-bound method for the knapsack problem. J. Comput. Syst. Sci. Int. 50(5), 756 (2011)

    Article  MathSciNet  Google Scholar 

  14. Kolpakov, R.M., Posypkin, M.A., Sigal, I.K.: On a lower bound on the computational complexity of a parallel implementation of the branch-and-bound method. Autom. Remote Control 71(10), 2152–2161 (2010)

    Article  MathSciNet  Google Scholar 

  15. Pietracaprina, A., Pucci, G., Silvestri, F., Vandin, F.: Space-efficient parallel algorithms for combinatorial search problems. J. Parallel Distrib. Comput. 76, 58–65 (2015)

    Article  Google Scholar 

  16. Rauber, T., Rünger, G.: Parallel Programming: For Multicore and Cluster Systems. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37801-0

    Book  MATH  Google Scholar 

  17. Roucairol, C.: A parallel branch and bound algorithm for the quadratic assignment problem. Discret. Appl. Math. 18(2), 211–225 (1987)

    Article  MathSciNet  Google Scholar 

  18. Sergeyev, Y.D., Grishagin, V.: Sequential and parallel algorithms for global optimization. Optim. Methods Softw. 3(1–3), 111–124 (1994)

    Article  Google Scholar 

  19. Sergeyev, Y., Grishagin, V.: Parallel asynchronous global search and the nested optimization scheme. J. Comput. Anal. Appl. 3(2), 123–145 (2001)

    MathSciNet  MATH  Google Scholar 

  20. Strongin, R., Sergeyev, Y.: Global multidimensional optimization on parallel computer. Parallel Comput. 18(11), 1259–1273 (1992)

    Article  MathSciNet  Google Scholar 

  21. Strongin, R., Sergeyev, Y.: Global optimization: fractal approach and non-redundant parallelism. J. Glob. Optim. 27(1), 25–50 (2003)

    Article  MathSciNet  Google Scholar 

  22. Vu, T.T., Derbel, B.: Parallel branch-and-bound in multi-core multi-CPU multi-GPU heterogeneous environments. Futur. Gener. Comput. Syst. 56, 95–109 (2016)

    Article  Google Scholar 

  23. Wu, I.C., Kung, H.T.: Communication complexity for parallel divide-and-conquer. In: Proceedings of 32nd Annual Symposium on Foundations of Computer Science, pp. 151–162. IEEE (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Kolpakov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kolpakov, R., Posypkin, M. (2019). The Scalability Analysis of a Parallel Tree Search Algorithm. In: Evtushenko, Y., Jaćimović, M., Khachay, M., Kochetov, Y., Malkova, V., Posypkin, M. (eds) Optimization and Applications. OPTIMA 2018. Communications in Computer and Information Science, vol 974. Springer, Cham. https://doi.org/10.1007/978-3-030-10934-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10934-9_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10933-2

  • Online ISBN: 978-3-030-10934-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics