Skip to main content

Reactive Oxygen Species Metabolism and Antioxidant Defense in Plants Under Metal/Metalloid Stress

  • Chapter
  • First Online:
Plant Abiotic Stress Tolerance

Abstract

Toxic metals/metalloids are considered leading environmental contaminants for world agriculture. Metal/metalloid pollution in the crop growing area increases their accumulation in plant as well as facilitates entry of them into the human food cycle. Recently it is gaining enormous research interest as it limits crop production by harshly altering the physiology and biochemistry of plant. Metal/metalloid-induced stress reduces rate of photosynthesis, enhances generation of reactive oxygen species (ROS), increases methylglyoxal (MG) content and consequently causes oxidative stress, which is also accountable for overall growth reduction of plant. Plants have well-structured antioxidant defense and glyoxalase system at the cellular level to minimize the metal/metalloid toxicity. Beside these, different osmolytes and chelating agents were synthesized in plant cell to work against stress. So, effective function of antioxidant defense and glyoxalase systems against ROS and MG, improvement of osmolytes synthesis and production of different chelating agents under stress condition determines the tolerance capability of plants. However, the efficiency of this system varies greatly with plant genotypes and stress intensity. In this chapter, we reviewed the recent reports on different molecular approaches of metal/metalloid-induced stress tolerance strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achary VM, Jena S, Panda KK, Panda BB (2008) Aluminium induced oxidative stress and DNA damage in root cells of Allium cepa L. Ecotoxicol Environ Saf 70:300–310

    CAS  PubMed  Google Scholar 

  • Aftab T, Khan MMA, Naeem M, Idrees M, da Silva JAT, Ram M (2012) Exogenous nitric oxide donor protects Artemisia annua from oxidative stress generated by boron and aluminium toxicity. Ecotoxicol Environ Saf 80:60–68

    CAS  PubMed  Google Scholar 

  • Agami RA, Mohamed GF (2013) Exogenous treatment with indole-3-acetic acid and salicylic acid alleviates cadmium toxicity in wheat seedlings. Ecotoxicol Environ Saf 94:164–171

    CAS  PubMed  Google Scholar 

  • Ahn YO, Kim SH, Lee J, Kim HR, Lee H-S, Kwak S-S (2012) Three Brassica rapa metallothionein genes are differentially regulated under various stress conditions. Mol Biol Rep 39:2059–2067

    CAS  PubMed  Google Scholar 

  • Ali B (2017) Salicylic acid induced antioxidant system enhances the tolerence to aluminium in mung bean (Vigna radiata L. Wilczek) plants. Indian J Plant Physiol 22:178–189

    CAS  Google Scholar 

  • Ali B, Hasan SA, Hayat S, Hayat Q, Yadav S, Fariduddin Q, Ahmad A (2008) A role for brassinosteroids in the amelioration of aluminum stress through antioxidant system in mung bean (Vigna radiate L. Wilczek). Environ Exp Bot 62:153–159

    CAS  Google Scholar 

  • Ali B, Xu X, Gill RA, Yang S, Ali S, Tahir M, Zhou W (2014) Promotive role of 5-aminolevulinic acid on mineral nutrients and antioxidative defense system under lead toxicity in Brassica napus. Ind Crop Prod 52:617–626

    CAS  Google Scholar 

  • Ali S, Bharwana SA, Rizwan M, Farid M, Kanwal S, Ali Q, Ibrahim M, Gill RA, Khan MD (2015a) Fulvic acid mediates chromium (Cr) tolerance in wheat (Triticum aestivum L.) through lowering of Cr uptake and improved antioxidant defense system. Environ Sci Pollut Res 22:10601–10609. https://doi.org/10.1007/s11356-015-4271-7

    Article  CAS  Google Scholar 

  • Ali B, Gill RA, Yang S, Gill MB, Farooq MA, Liu D, Daud MK, Ali S, Zhou W (2015b) Regulation of cadmium-induced proteomic and metabolic changes by 5-aminolevulinic acid in leaves of Brassica napus L. PLoS One 10:e0123328. https://doi.org/10.1371/journal.pone.0123328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amooaghaie R, Zangene-Madar F, Enteshari S (2017) Role of two-sided crosstalk between NO and H2S on improvement of mineral homeostasis and antioxidative defense in Sesamum indicum under lead stress. Ecotoxicol Environ Saf 139:210–218

    CAS  PubMed  Google Scholar 

  • Anjum NA, Hasanuzzaman M, Hossain MA, Thangavel P, Roychoudhury A, Gill SS, Rodrigo MAM, Adam V, Fujita M, Kizek R, Duarte AC, Pereira E, Ahmad I (2015) Jacks of metal/metalloid chelation trade in plants—an overview. Front Plant Sci 6:192. https://doi.org/10.3389/fpls.2015.00192

    Article  PubMed  PubMed Central  Google Scholar 

  • Anwaar SA, Ali S, Ali S, Ishaque W, Farid M, Farooq MA, Najeeb U, Abbas F, Sharif M (2015) Silicon (Si) alleviates cotton (Gossypium hirsutum L.) from zinc (Zn) toxicity stress by limiting Zn uptake and oxidative damage. Environ Sci Pollut Res 22(5):3441–3450. https://doi.org/10.1007/s11356-014-3938-9

    Article  CAS  Google Scholar 

  • Asgher M, Khan MIR, Iqbal N, Masood A, Khan NA (2013) Cadmium tolerance in mustard cultivars: dependence on proline accumulation and nitrogen assimilation. J Funct Environ Bot 3:30–42

    Google Scholar 

  • Ashraf M, Foolad M (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216

    CAS  Google Scholar 

  • Ashraf U, Tang X (2017) Yield and quality responses, plant metabolism and metal distribution pattern in aromatic rice under lead (Pb) toxicity. Chemosphere 176:141–155

    CAS  PubMed  Google Scholar 

  • Ashraf U, Kanu AS, Mo Z, Hussain S, Anjum SA, Khan I, Abbas RN, Tang X (2015) Lead toxicity in rice; effects, mechanisms and mitigation strategies—a mini review. Environ Sci Pollut Res 22:18318–18332

    CAS  Google Scholar 

  • Awasthi JP, Saha B, Regon P, Sahoo S, Chowra U, Pradhan A, Roy A, Panda SK (2017) Morpho-physiological analysis of tolerance to aluminum toxicity in rice varieties of North East India. PLoS One 12:e0176357. https://doi.org/10.1371/journal.pone.0176357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baruah KK, Bharali A (2015) Physiological basis of iron toxicity and its management in crops: recent advances in crop physiology. Daya Publishing House, New Delhi

    Google Scholar 

  • Becker M, Asch F (2005) Iron toxicity in rice—conditions and management concepts. J Plant Nutr Soil Sci 168:558–573

    CAS  Google Scholar 

  • Benavides MP, Gallego SM, Tomaro ML (2005) Cadmium toxicity in plants. Braz J Plant Physiol 17:21–34. https://doi.org/10.1590/S1677-04202005000100003

    Article  CAS  Google Scholar 

  • Biswas S, Mano J (2015) Lipid peroxide-derived short-chain carbonyls mediate hydrogen peroxide-induced and salt-induced programmed cell death in plants. Plant Physiol 168:885–898

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boojar MM, Goodarzi F (2008) Comparative evaluation of oxidative stress status and manganese availability in plants growing on manganese mine. Ecotoxicol Environ Saf 71:692–699

    CAS  PubMed  Google Scholar 

  • Broadley MR, White PJ, Hammond JP, Zelko I, Lux A (2007) Zinc in plants. New Phytol 173:677–702

    CAS  PubMed  Google Scholar 

  • Cargnelutti D, Tabaldi LA, Spanevello RM, Jucoski GO, Battisti V, Redin M, Linares CEB, Dressler VL, Flores ÉMM, Nicoloso FT, Morsch VM, Schetinger MRC (2006) Mercury toxicity induces oxidative stress in growing cucumber seedlings. Chemosphere 65:999–1006

    CAS  PubMed  Google Scholar 

  • Cervilla LM, Blasco B, Ríos JJ, Romero L, Ruiz JM (2007) Oxidative stress and antioxidants in tomato (Solanum lycopersicum) plants subjected to boron toxicity. Ann Bot 100:747–756

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chandrakar V, Yadu B, Meena RK, Dubey A, Keshavkant S (2017) Arsenic-induced genotoxic responses and their amelioration by diphenylene iodonium, 24-epibrassinolide and proline in Glycine max L. Plant Physiol Biochem 112:74–86. https://doi.org/10.1016/j.plaphy.2016.12.023

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Wang L, Chen F, Korpelainen H, Li C (2013) The effects of exogenous putrescine on sex-specific responses of Populus cathayana to copper stress. Ecotoxicol Environ Saf 97:94–102

    CAS  PubMed  Google Scholar 

  • Chen Y, Mo HZ, Hu LB, Li YQ, Chen J, Yang LF (2014) The endogenous nitric oxide mediates selenium-induced phytotoxicity by promoting ROS generation in Brassica rapa. PLoS One 9:e110901

    PubMed  PubMed Central  Google Scholar 

  • Chen J, Shaf M, Li S, Wang Y, Wu J, Ye Z, Peng D, Yan W, Liu D (2015) Copper induced oxidative stresses, antioxidant responses and phytoremediation potential of Moso bamboo (Phyllostachys pubescens). Sci Rep 5:13554. https://doi.org/10.1038/srep13554

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen Q, Zhang X, Liu Y, Wei J, Shen W, Shen Z, Cui J (2017) Hemin-mediated alleviation of zinc, lead and chromium toxicity is associated with elevated photosynthesis, antioxidative capacity; suppressed metal uptake and oxidative stress in rice seedlings. Plant Growth Regul 81:253–264. https://doi.org/10.1007/s10725-016-0202-y

    Article  CAS  Google Scholar 

  • Cherif J, Mediouni C, Ammar WB, Jemal F (2011) Interactions of zinc and cadmium toxicity in their effects on growth and in antioxidative systems in tomato plants (Solanum lycopersicum). J Environ Sci 23:837–844

    CAS  Google Scholar 

  • Chou T-S, Chao Y-Y, Huang W-D, Hong C-Y, Kao CH (2011) Metal/metalloid-induced oxidative stress in plants. J Plant Physiol 168:1021–1030

    CAS  PubMed  Google Scholar 

  • Choudhary SP, Kanwar M, Bhardwaj R, Yu J-Q, Tran L-SP (2012) Chromium stress mitigation by polyamine-brassinosteroid application involves phytohormonal and physiological strategies in Raphanus sativus L. PLoS One 7:e33210. https://doi.org/10.1371/journal.pone.0033210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choudhury S, Panda SK (2004) Toxic effects, oxidative stress and ultrastructural changes in moss Taxithelium nepalense (Schwaegr.) Broth. under chromium and lead phytotoxicity. Water Air Soil Pollut 167:73–90. https://doi.org/10.1007/s11270-005-8682-9

    Article  CAS  Google Scholar 

  • Chowra U, Yanase E, Koyama H, Panda SK (2017) Aluminium-induced excessive ROS causes cellular damage and metabolic shifts in black gram Vigna mungo (L.) Hepper. Protoplasma 254:293–302

    CAS  PubMed  Google Scholar 

  • Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182

    CAS  PubMed  Google Scholar 

  • Cui Y, Zhao N (2011) Oxidative stress and change in plant metabolism of maize (Zea mays L.) growing in contaminated soil with elemental sulfur and toxic effect of zinc. Plant Soil Environ 57:34–39

    CAS  Google Scholar 

  • Cuypers A, Plusquin M, Remans T, Jozefczak M, Keunen E, Gielen H, Opdenakker K, Nair AR, Munters E, Artois TJ, Nawrot T, Vangronsveld J, Smeets K (2010) Cadmium stress: an oxidative challenge. Biometals 23:927–940. https://doi.org/10.1007/s10534-010-9329-x

    Article  CAS  PubMed  Google Scholar 

  • Dai M, Lu H, Liu W, Jia H, Hong H, Liu J, Yan C (2017) Phosphorus mediation of cadmium stress in two mangrove seedlings Avicennia marina and Kandelia obovata differing in cadmium accumulation. Ecotoxicol Environ Saf 139:272–279. https://doi.org/10.1016/j.ecoenv.2017.01.017

    Article  CAS  PubMed  Google Scholar 

  • de Sousa A, AbdElgawad H, Han A, Teixeira J, Matos M, Fidalgo F (2016) Oxidative metabolism of rye (Secale cereale L.) after short term exposure to aluminum, uncovering the glutathione-ascorbate redox network. Front Plant Sci 7:685. https://doi.org/10.3389/fpls.2016.00685

    Article  PubMed  PubMed Central  Google Scholar 

  • Deng C, Zhang D, Pan X, Chang F, Wang S (2013) Toxic effects of mercury on PSI and PSII activities, membrane potential and transthylakoid proton gradient in Microsorium pteropus. J Photochem Photobiol B 127:1–7

    CAS  PubMed  Google Scholar 

  • Dixon DP, Edwards R (2010) Glutathione transferases. In: The Arabidopsis book, vol 8. The American Society of Plant Biologists, Austin

    Google Scholar 

  • Dong Y, Xu L, Wang Q, Fan Z, Kong J, Bai X (2014) Effects of exogenous nitric oxide on photosynthesis, antioxidative ability, and mineral element contents of perennial ryegrass under copper stress. J Plant Interact 9:402–411

    CAS  Google Scholar 

  • Dordas C, Chrispeels MJ, Brown PH (2000) Permeability and channel-mediated transport of boric acid across membrane vesicles isolated from squash roots. Plant Physiol 124:1349–1362

    CAS  PubMed  PubMed Central  Google Scholar 

  • Duan X, Li X, Ding F, Zhao J, Guo A, Zhang L, Yao J, Yang Y (2015) Interaction of nitric oxide and reactive oxygen species and associated regulation of root growth in wheat seedlings under zinc stress. Ecotoxicol Environ Saf 113:95–102

    CAS  PubMed  Google Scholar 

  • Dubey D, Pandey A (2011) Effect of nickel (Ni) on chlorophyll, lipid peroxidation and antioxidant enzymes activities in black gram (Vigna mungo) leaves. Int J Sci Nat 2:395–401

    CAS  Google Scholar 

  • Elbaz A, Wei YY, Meng Q, Zheng Q, Yang ZM (2010) Mercury-induced oxidative stress and impact on antioxidant enzymes in Chlamydomonas reinhardtii. Ecotoxicology 19:1285–1293

    CAS  PubMed  Google Scholar 

  • El-Ramady HR, Domokos-Szabolcsy E, Abdalla NA, Alshaal TA, Shalaby TA, Sztrik A, Prokisch J, Fari M (2014) Selenium and nano-selenium in agroecosystems. Environ Chem Lett 12:495–510

    CAS  Google Scholar 

  • Emamverdian A, Ding Y, Mokhberdoran F, Xie Y (2015) Heavy metal stress and some mechanisms of plant defense response. Sci World J 2015:756120. https://doi.org/10.1155/2015/756120

    Article  CAS  Google Scholar 

  • Eraslan F, Inal A, Savasturk O, Gunes A (2007) Changes in antioxidative system and membrane damage of lettuce in response to salinity and boron toxicity. Sci Hortic 114:5–10

    CAS  Google Scholar 

  • Eser A, Aydemir T (2016) The effect of kinetin on wheat seedlings exposed to boron. Plant Physiol Biochem 108:158–164

    CAS  PubMed  Google Scholar 

  • Faize M, Burqos L, Piqueras A, Nicolas E, Barba-Espin G, Clement-Moreno MJ, Alcobendas R, Artlip T, Hernandez JA (2011) Involvement of cytosolic ascorbate peroxidase and Cu/Zn-superoxide dismutase for improved tolerance against drought stress. J Exp Bot 62:2599–2613

    CAS  PubMed  Google Scholar 

  • Farid M, Ali S, Rizwan M, Saeed R, Tauqeer HM, Sallah-Ud-Din R, Azam A, Raza N (2017) Microwave irradiation and citric acid assisted seed germination and phytoextraction of nickel (Ni) by Brassica napus L.: morpho-physiological and biochemical alterations under Ni stress. Environ Sci Pollut Res 24(26):21050–21064. https://doi.org/10.1007/s11356-017-9751-5

    Article  CAS  Google Scholar 

  • Farooq MA, Islam F, Ali B, Najeeb U, Mao B, Gill RA, Yan G, Siddique KHM, Zhou W (2016) Arsenic toxicity in plants: cellular and molecular mechanisms of its transport and metabolism. Environ Exp Bot 132:42–52

    CAS  Google Scholar 

  • Feigl G, Lehotai N, Molnár Á, Ördög A, Rodríguez-Ruiz M, Palma JM, Corpas FJ, Erdei L, Kolbert Z (2015) Zinc induces distinct changes in the metabolism of reactive oxygen and nitrogen species (ROS and RNS) in the roots of two Brassica species with different sensitivity to zinc stress. Ann Bot 116:613–625

    CAS  PubMed  Google Scholar 

  • Fernando DR, Lynch JP (2015) Manganese phytotoxicity: new light on an old problem. Ann Bot 116:313–319

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fernando DR, Marshall AT, Forster PI, Hoebee SE, Siegele R (2013) Multiple metal accumulation within a manganese-specific genus. Am J Bot 100:690–700

    CAS  PubMed  Google Scholar 

  • Fischel JS, Fischel MH, Sparks DL (2015) Advances in understanding reactivity of manganese oxides with arsenic and chromium in environmental systems. In: Feng X, Li W, Zhu M, Sparks DL (eds) Advances in the environmental biogeochemistry of manganese oxides. American Chemical Society, pp 1–27

    Google Scholar 

  • Flora SJS, Mittal M, Mehta A (2008) Heavy metal induced oxidative stress & its possible reversal by chelation therapy. Indian J Med Res 128:501–523

    CAS  PubMed  Google Scholar 

  • Flora G, Gupta D, Tiwari A (2012) Toxicity of lead: a review with recent updates. Interdiscip Toxicol 5(2):47–58

    CAS  PubMed  PubMed Central  Google Scholar 

  • Foyer CH, Shigeoka S (2011) Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiol 155:93–100

    CAS  PubMed  Google Scholar 

  • Gajewska E, Drobik D, Wielanek M, Nalewajko JS, Gocławski J, Mazur J, Skłodowska M (2013) Alleviation of nickel toxicity in wheat (Triticum aestivum L.) seedlings by selenium supplementation. Biol Lett 50:63–76

    Google Scholar 

  • Gao X, Wang X, Lu Y, Zhang L, Shen Y, Liang Z, Zhang D (2004) Jasmonic acid is involved in the water stress induced betaine accumulation in pear leaves. Plant Cell Environ 27:497–507. https://doi.org/10.1111/j.1365-3040.2004.01167.x

    Article  CAS  Google Scholar 

  • Ghasemi F, Heidari R, Jameii R, Purakbar L (2013) Responses of growth and antioxidative enzymes to various concentrations of nickel in Zea mays leaves and roots. Rom J Biol Plant Biol 58:37–49

    Google Scholar 

  • Giannakoula A, Moustakas M, Mylona P, Papadakis I, Yupsanis T (2008) Aluminium tolerance in maize is correlated with increased levels of mineral nutrients, carbohydrates and proline and decreased levels of lipid peroxidation and Al accumulation. J Plant Physiol 165:385–396

    CAS  PubMed  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    CAS  PubMed  Google Scholar 

  • Gill RA, Zang L, Ali B, Farooq MA, Cui P, Yang S, Ali S, Zhou W (2015) Chromium-induced physio-chemical and ultrastructural changes in four cultivars of Brassica napus L. Chemosphere 120:154–164. https://doi.org/10.1016/j.chemosphere.2014.06.029

    Article  CAS  PubMed  Google Scholar 

  • Gjorgieva D, Panovska TK, Ruskovska T, Bačeva T, Stafilov T (2013) Mineral nutrient imbalance, total antioxidants level and DNA damage in common bean (Phaseolus vulgaris L.) exposed to heavy metals. Physiol Mol Biol Plants 19:499–507

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gomes-Junior RA, Gratão PL, Gaziola SA, Mazzafera P, Lea PJ, Azevedo RA (2007) Selenium-induced oxidative stress in coffee cell suspension cultures. Funct Plant Biol 34:449–456

    CAS  PubMed  Google Scholar 

  • González A, Lynch J (1999) Tolerance of tropical common bean genotypes to manganese toxicity: performance under different growing conditions. J Plant Nutr 22:511–525

    Google Scholar 

  • González A, Steffen KL, Lynch JP (1998) Light and excess manganese. Implications for oxidative stress in common bean. Plant Physiol 118:493–504

    PubMed  PubMed Central  Google Scholar 

  • Gorny J, Billon G, Noiriel C, Dumoulin D, Lesven L, Madé B (2016) Chromium behavior in aquatic environments: a review. Environ Rev 24:503–516. https://doi.org/10.1139/er-2016-0012

    Article  CAS  Google Scholar 

  • Gunes A, Inal A, Bagci EG, Coban S, Pilbeam DJ (2007) Silicon mediates changes to some physiological and enzymatic parameters symptomatic for oxidative stress in spinach (Spinacia oleracea L.) grown under B toxicity. Sci Hortic 113:113–119

    CAS  Google Scholar 

  • Gupta B, Pathak GC, Pandey N (2011) Induction of oxidative stress and antioxidant responses in Vigna mungo by zinc stress. Russ J Plant Physiol 58:85–91

    CAS  Google Scholar 

  • Gururani MA, Venkatesh J, Tran LSP (2015) Regulation of photosynthesis during abiotic stress induced photoinhibition. Mol Plant 8:1304–1320

    CAS  PubMed  Google Scholar 

  • Habiba U, Ali S, Farid M, Shakoor MB, Rizwan M, Ibrahim M, Abbasi GH, Hayat T, Ali B (2015) EDTA enhanced plant growth, antioxidant defense system, and phytoextraction of copper by Brassica napus L. Environ Sci Pollut Res 22(2):1534–1544. https://doi.org/10.1007/s11356-014-3431-5

    Article  CAS  Google Scholar 

  • Hamed SM, Zinta G, Klöck G, Asard H, Selim S, AbdElgawad H (2017a) Zinc-induced differential oxidative stress and antioxidant responses in Chlorella sorokiniana and Scenedesmus acuminatus. Ecotoxicol Environ Saf 140:256–263

    CAS  PubMed  Google Scholar 

  • Hamed SM, Selim S, Klöck G, AbdElgawad H (2017b) Sensitivity of two green microalgae to copper stress: growth, oxidative and antioxidants analyses. Ecotoxicol Environ Saf 144:19–25

    CAS  PubMed  Google Scholar 

  • Hasanuzzaman M, Fujita M (2012) Heavy metals in the environment: current status, toxic effects on plants and possible phytoremediation. In: Anjum NA, Pereira MA, Ahmad I, Duarte AC, Umar S, Khan NA (eds) Phytotechnologies: remediation of environmental contaminants. CRC Press, Boca Raton, pp 7–73

    Google Scholar 

  • Hasanuzzaman M, Fujita M (2013) Exogenous sodium nitroprusside alleviates arsenic-induced oxidative stress in wheat (Triticum aestivum L.) seedlings by enhancing antioxidant defense and glyoxalase system. Ecotoxicology 23:584–596

    Google Scholar 

  • Hasanuzzaman M, Anwar Hossain M, Masayuki F (2011) Selenium-induced up regulation of the antioxidant defense and methylglyoxal detoxification system reduces salinity-induced damage in rapeseed seedlings. Biol Trace Elem Res 143:1704–1721

    CAS  PubMed  Google Scholar 

  • Hasanuzzaman M, Hossain MA, Fujita M (2012a) Exogenous selenium pretreatment protects rapeseed seedlings from cadmium-induced oxidative stress by upregulating antioxidant defense and methylglyoxal detoxification systems. Biol Trace Elem Res 149:248–261

    CAS  PubMed  Google Scholar 

  • Hasanuzzaman M, Hossain MA, Teixeira da Silva JA, Fujita M (2012b) Plant responses and tolerance to abiotic oxidative stress: antioxidant defense is a key factor. In: Bandi V, Shanker AK, Shanker C, Mandapaka M (eds) Crop stress and its management: perspectives and strategies. Springer, Berlin, pp 261–316

    Google Scholar 

  • Hasanuzzaman M, Nahar K, Hossain MS, Mahmud JA, Rahman A, Inafuku M, Oku H, Fujita M (2017a) Coordinated actions of glyoxalase and antioxidant defense systems in conferring abiotic stress tolerance in plants. Int J Mol Sci 18:200. https://doi.org/10.3390/ijms18010200

    Article  CAS  PubMed Central  Google Scholar 

  • Hasanuzzaman M, Nahar K, Gill SS, Alharby HF, Razafindrabe BH, Fujita M (2017b) Hydrogen peroxide pretreatment mitigates cadmium-induced oxidative stress in Brassica napus L.: an intrinsic study on antioxidant defense and glyoxalase systems. Front Plant Sci 8:115. https://doi.org/10.3389/fpls.2017.00115

    Article  PubMed  PubMed Central  Google Scholar 

  • Hasanuzzaman M, Nahar K, Anee TI, Fujita M (2017c) Exogenous silicon attenuates cadmium-induced oxidative stress in Brassica napus L. by modulating AsA-GSH pathway and glyoxalase system. Front Plant Sci 8:1061. https://doi.org/10.3389/fpls.2017.01061

    Article  PubMed  PubMed Central  Google Scholar 

  • Hasanuzzaman M, Nahar K, Rahman A, Mahmud JA, Alharby HF, Fujita M (2018) Exogenous glutathione attenuates lead-induced oxidative stress in wheat by improving antioxidant defense and physiological mechanisms. J Plant Interact 13:203–212

    CAS  Google Scholar 

  • Hattab S, Hattab S, Flores-Casseres ML, Boussetta H, Doumas P, Hernandez LE, Banni M (2016) Characterisation of lead-induced stress molecular biomarkers in Medicago sativa plants. Environ Exp Bot 123:1–12

    CAS  Google Scholar 

  • Hauck M, Hesse V, Runge M (2002) Correlations between the Mn/Ca ratio in stem flow and epiphytic lichen abundance in a dieback-affected spruce forest of the Harz Mountains Flora. Funct Ecol Plants 197:361–369

    Google Scholar 

  • Hauck M, Paul A, Gross S, Raubuch M (2003) Manganese toxicity in epiphytic lichens: chlorophyll degradation and interaction with iron and phosphorus. Environ Exp Bot 49:181–191

    CAS  Google Scholar 

  • Hayat S, Khalique G, Wani AS, Alyemeni MN, Ahmad A (2014) Protection of growth in response to 28-homobrassinolide under the stress of cadmium and salinity in wheat. Int J Biol Macromol 64:130–136

    CAS  PubMed  Google Scholar 

  • He J, Wang Y, Ding H, Ge C (2016) Epibrassinolide confers zinc stress tolerance by regulating antioxidant enzyme responses, osmolytes, and hormonal balance in Solanum melongena seedlings. Braz J Bot 39(1):295–303. https://doi.org/10.1007/s40415-015-0210-6

    Article  Google Scholar 

  • Hoang TH, Ju-Yong K, Sunbaek B, Kyoung-Woong K (2010) Source and fate of As in the environment. Geosyst Eng 13:35–42

    Google Scholar 

  • Homa D, Haile E, Washe AP (2016) Determination of spatial chromium contamination of the environment around industrial zones. Int J Anal Chem 7214932. https://doi.org/10.1155/2016/7214932

    Google Scholar 

  • Hossain MA, Piyatida P, da Silva JAT, Fujita M (2012) Molecular mechanism of heavy metal toxicity and tolerance in plants: central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. J Bot 2012:872875. https://doi.org/10.1155/2012/872875

    Article  CAS  Google Scholar 

  • Houtz RL, Nable RO, Cheniae GM (1988) Evidence for effects on the in vivo activity of ribulose-biphosphate carboxylase/oxygenase during development of Mn toxicity in tobacco. Plant Physiol 86:1143–1149

    CAS  PubMed  PubMed Central  Google Scholar 

  • Inal A, Pilbeam DJ, Gunes A (2009) Silicon increases tolerance to boron toxicity and reduces oxidative damage in barley. J Plant Nutr 32:112–128

    CAS  Google Scholar 

  • Islam F, Yasmeen T, Riaz M, Arif MS, Ali S, Raza SH (2014) Proteus mirabilis alleviates zinc toxicity by preventing oxidative stress in maize (Zea mays) plants. Ecotoxicol Environ Saf 110:143–152

    CAS  PubMed  Google Scholar 

  • Israr M, Sahi S, Datta R, Sarkar D (2006) Bioaccumulation and physiological effects of mercury in Sesbania drummondii. Chemosphere 65:591–598

    CAS  PubMed  Google Scholar 

  • Jadid N, Maziyah R, Nurcahyani DD, Mubarokah NR (2017) Growth and physiological responses of some Capsicum frutescens varieties to copper stress. AIP Conf Proc 1854:020018. https://doi.org/10.1063/1.4985409

    Article  CAS  Google Scholar 

  • Kagi JHR (1991) Overview of metallothionein. Methods Enzymol 205:613–626

    CAS  PubMed  Google Scholar 

  • Kamran MA, Musstjab SA, Eqani AS, Bibi S, Xu R-K, Amna, Monis MFH, Katsoyiannis A, Bokhari H, Chaudhary HJ (2016) Bioaccumulation of nickel by E. sativa and role of plant growth promoting rhizobacteria (PGPRs) under nickel stress. Ecotoxicol Environ Saf 26:256–263

    Google Scholar 

  • Kaur G, Asthir B (2015) Proline: a key player in plant abiotic stress tolerance. Biol Plant 59:609–619

    CAS  Google Scholar 

  • Kaur G, Kumar S, Thakur P, Malik JA, Bhandhari K, Sharma KD, Nayyar H (2011) Involvement of proline in response of chickpea (Cicer arietinum L.) to chilling stress at reproductive stage. Sci Hortic 128:174–118

    CAS  Google Scholar 

  • Kaya C, Ashraf M (2015) Exogenous application of nitric oxide promotes growth and oxidative defense system in highly boron stressed tomato plants bearing fruit. Sci Hortic 185:43–47

    CAS  Google Scholar 

  • Kaya C, Tuna AL, Okant AM (2010) Effect of foliar applied kinetin and indole acetic acid on maize plants grown under saline conditions. Turk J Agric For 34:529–538

    Google Scholar 

  • Khaliq A, Ali S, Hameed A, Farooq MA, Farid M, Shakoor MB, Mahmood K, Ishaque W, Rizwan M (2015) Silicon alleviates nickel toxicity in cotton seedlings through enhancing growth, photosynthesis and suppressing Ni uptake and oxidative stress Silicon alleviates nickel toxicity in cotton. Arch Agron Soil Sci. https://doi.org/10.1080/03650340.2015.1073263

    Google Scholar 

  • Khan MIR, Nazir F, Asgher M, Per TS, Khan NA (2015) Selenium and sulfur influence ethylene formation and alleviate cadmium-induced oxidative stress by improving proline and glutathione production in wheat. J Plant Physiol 173:9–18

    CAS  PubMed  Google Scholar 

  • Kochian L, Piñeros MA, Liu J, Magalhaes JV (2015) Plant adaptation to acid soils: the molecular basis for crop aluminum resistance. Annu Rev Plant Biol 66:571–598

    CAS  PubMed  Google Scholar 

  • Kong Z, Glick BR, Duan J, Ding S, Tian J, McConkey BJ, Wei G (2015) Effects of 1-aminocyclopropane-1-carboxylate (ACC) deaminase-overproducing Sinorhizobium meliloti on plant growth and copper tolerance of Medicago lupulina. Plant Soil 391(1–2):383–398

    CAS  Google Scholar 

  • Kováčik J, Babula P, Klejdus B, Hedbavny J (2013) Chromium uptake and consequences for metabolism and oxidative stress in chamomile plants. J Agric Food Chem 61:7864–7873. https://doi.org/10.1021/jf401575a

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Prasad MNV, Sytar O (2012a) Lead toxicity, defense strategies and associated indicative biomarkers in Talinum triangulare grown hydroponically. Chemosphere 89:1056–1065

    CAS  PubMed  Google Scholar 

  • Kumar H, Sharma D, Kumar V (2012b) Nickel-induced oxidative stress and role of antioxidant defence in Barley roots and leaves. Int J Environ Biol 2:121–128

    CAS  Google Scholar 

  • Kumar S, Dubey RS, Tripathi RD, Chakrabarty D, Trivedi PK (2015) Omics and biotechnology of arsenic stress and detoxification in plants: current updates and prospective. Environ Int 74:221–230

    CAS  PubMed  Google Scholar 

  • Kumar B, Smita K, Flores LC (2017) Plant mediated detoxification of mercury and lead. Arab J Chem 10:S2335–S2342

    CAS  Google Scholar 

  • Lamhamdi M, Lafont R, Rharrabe K, Sayah F, Aarab A, Bakrim A (2016) 20-Hydroxyecdysone protects wheat seedlings (Triticum aestivum L.) against lead stress. Plant Physiol Biochem 98:64–71

    CAS  PubMed  Google Scholar 

  • Landi M, Pardossi A, Remorini D, Guidi L (2013) Antioxidant and photosynthetic response of a purple-leaved and a green-leaved cultivar of sweet basil (Ocimum basilicum) to boron excess. Environ Exp Bot 85:64–75

    CAS  Google Scholar 

  • Lidon FC, Teixeira MG (2000) Rice tolerance to excess Mn: implications in the chloroplast lamellae and synthesis of a novel Mn protein. Plant Physiol Biochem 38:969–978

    CAS  Google Scholar 

  • Lidon FC, Barreiro M, Ramalho J (2004) Manganese accumulation in rice: implications for photosynthetic functioning. J Plant Physiol 161:1235–1244

    CAS  PubMed  Google Scholar 

  • Mahmood Q, Ahmad R, Kwak SS, Rashid A, Anjum NA (2010) Ascorbate and glutathione: protectors of plants in oxidative stress. In: Anjum NA, Chan MT, Umar S (eds) Ascorbate glutathione pathway and stress tolerance in plants. Springer, Dordrecht, pp 209–229. https://doi.org/10.1007/978-90-481-9404-9_7

    Chapter  Google Scholar 

  • Mahmud JA, Hasanuzzaman M, Nahar K, Rahman A, Fujita M (2017a) Relative tolerance of different species of Brassica to cadmium toxicity: coordinated role of antioxidant defense and glyoxalase systems. Plant Omics 10:107–117. https://doi.org/10.21475/poj.10.02.17.pne409

    Article  CAS  Google Scholar 

  • Mahmud JA, Hasanuzzaman M, Nahar K, Rahman A, Hossain MS, Fujita M (2017b) γ-aminobutyric acid (GABA) confers chromium stress tolerance in Brassica juncea L. by modulating the antioxidant defense and glyoxalase systems. Ecotoxicology 26:675–690. https://doi.org/10.1007/s10646-017-1800-9

    Article  CAS  PubMed  Google Scholar 

  • Mahmud JA, Hasanuzzaman M, Nahar K, Rahman A, Hossain SM, Fujita M (2017c) Maleic acid assisted improvement of metal chelation and antioxidant metabolism confers chromium tolerance in Brassica juncea L. Ecotoxicol Environ Saf 144:216–226. https://doi.org/10.1016/j.ecoenv.2017.06.010

    Article  CAS  PubMed  Google Scholar 

  • Mahmud JA, Hasanuzzaman M, Nahar K, Bhuyan MHMB, Fujita M (2018) Insights into citric acid-induced cadmium tolerance and phytoremediation in Brassica juncea L.: coordinated functions of metal chelation, antioxidant defense and glyoxalase systems. Ecotoxicol Environ Saf 147:990–1001

    CAS  PubMed  Google Scholar 

  • Majerus V, Bertin P, Swenden V, Fortemps A, Lobréaux S, Lutts S (2007) Organ-dependent responses of the African rice to short-term iron toxicity: ferritin regulation and antioxidative responses. Biol Plant 51:303–312

    CAS  Google Scholar 

  • Malar S, Sahi SV, Favas PJC, Venkatachalam P (2015) Mercury heavy-metalinduced physiochemical changes and genotoxic alterations in water hyacinths [Eichhornia crassipes (Mart.)]. Environ Sci Pollut Res 22:4597–4608

    CAS  Google Scholar 

  • Mano J (2012) Reactive carbonyl species, their production from lipid peroxides, action in environmental stress, and the detoxification mechanism. Plant Physiol Biochem 59:90–97

    CAS  PubMed  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic, London, pp 411–430

    Google Scholar 

  • Martínez-Ruiz EB, Martínez-Jerónimo F (2016) How do toxic metals affect harmful cyanobacteria? An integrative study with a toxigenic strain of Microcystis aeruginosa exposed to nickel stress. Ecotoxicol Environ Saf 133:36–46

    PubMed  Google Scholar 

  • Matsumoto H (2000) Cell biology of aluminum toxicity and tolerance in higher plants. Int Rev Cytol 200:1–46

    CAS  PubMed  Google Scholar 

  • Mei L, Daud MK, Ullah N, Ali S, Khan M, Malik Z, Zhu SJ (2015) Pretreatment with salicylic acid and ascorbic acid significantly mitigate oxidative stress induced by copper in cotton genotypes. Environ Sci Pollut Res 22(13):9922–9931. https://doi.org/10.1007/s11356-015-4075-9

    Article  CAS  Google Scholar 

  • Meriga B, Reddy BK, Rao KR, Reddy LA, Kishor PB (2004) Aluminium-induced production of oxygen radicals, lipid peroxidation and DNA damage in seedlings of rice (Oryza sativa). J Plant Physiol 161:63–68

    CAS  PubMed  Google Scholar 

  • Michael PI, Krishnaswamy M (2011) The effect of zinc stress combined with high irradiance stress on membrane damage and antioxidative response in bean seedling. Environ Exp Bot 74:171–177

    CAS  Google Scholar 

  • Millaleo R, Reyes-Diaz M, Alberdi M, Ivanov AG, Krol M, Huner NP (2013) Excess manganese differentially inhibits photosystem I versus II in Arabidopsis thaliana. J Exp Bot 64:343–354

    CAS  PubMed  Google Scholar 

  • Miller G, Shulaev V, Mitter R (2008) Reactive oxygen signaling and abiotic stress. Physiol Plant 133:481–489. https://doi.org/10.1111/j.1399-3054.2008.01090.x

    Article  CAS  PubMed  Google Scholar 

  • Min S, Wen-jing X, Xiang-yong P, Fan-hua K (2013) Effects of exogenous proline on the growth of wheat seedlings under cadmium stress. Chin J Appl Ecol 24:129–134

    Google Scholar 

  • Moenne A, Gonzáleza A, Sáez CA (2016) Mechanisms of metal tolerance in marine macroalgae, with emphasis on copper tolerance in Chlorophyta and Rhodophyta. Aquat Toxicol 176:30–37

    CAS  PubMed  Google Scholar 

  • Molas J (2001) Comparison of nickel toxicity and resistance strategies of cabbage plants grown in soil with addition of inorganic and organic Ni (II) complexes. Dev Plant Soil Sci 92:464–465

    CAS  Google Scholar 

  • Molassiotis A, Sotiropoulos T, Tanou G, Diamantidis G, Therios I (2006) Boron-induced oxidative damage and antioxidant and nucleolytic responses in shoot tips culture of the apple rootstock EM 9 (Malus domestica Borkh). Environ Exp Bot 56:54–62

    CAS  Google Scholar 

  • Morina F, Jovanovic L, Mojovic M, Vidovic M, Pankovic D, Veljovic Jovanovic S (2010) Zinc-induced oxidative stress in Verbascum thapsus is caused by an accumulation of reactive oxygen species and quinhydrone in the cell wall. Physiol Plant 140(3):209–224

    CAS  PubMed  Google Scholar 

  • Mostofa MG, Fujita M (2013) Salicylic acid alleviates copper toxicity in rice (Oryza sativa L.) seedlings by up-regulating antioxidative and glyoxalase systems. Ecotoxicology 22(6):959–973. https://doi.org/10.1007/s10646-013-1073-x

    Article  CAS  PubMed  Google Scholar 

  • Mostofa MG, Seraj ZI, Fujita M (2014) Exogenous sodium nitroprusside and glutathione alleviate copper toxicity by reducing copper uptake and oxidative damage in rice (Oryza sativa L.) seedlings. Protoplasma 251(6):1373–1386. https://doi.org/10.1007/s00709-014-0639-7

    Article  CAS  PubMed  Google Scholar 

  • Mostofa MG, Hossain MA, Fujita M, Tran L-SP (2015) Physiological and biochemical mechanisms associated with trehalose-induced copper-stress tolerance in rice. Sci Rep 5:11433. https://doi.org/10.1038/srep11433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mostofa MG, Hossain MA, Siddiqui MN, Fujita M, Tran LSP (2017) Phenotypical, physiological and biochemical analyses provide insight into selenium-induced phytotoxicity in rice plants. Chemosphere 178:212–223

    CAS  PubMed  Google Scholar 

  • Moulick D, Ghosh D, Santra SC (2016) Evaluation of effectiveness of seed priming with selenium in rice during germination under arsenic stress. Plant Physiol Biochem 109:571–578

    CAS  PubMed  Google Scholar 

  • Mukhopadhyay M, Das A, Subba P, Bantawal P, Sarkar B, Ghosh P, Mondal TK (2013) Structural, physiological, and biochemical profiling of tea plants under zinc stress. Biol Plant 57:474–480. https://doi.org/10.1007/s10535-012-0300-2

    Article  CAS  Google Scholar 

  • Nable RO, Banuelos GS, Paull JG (1997) Boron toxicity. Plant Soil 193:181–198

    CAS  Google Scholar 

  • Nahar K, Hasanuzzaman M, Alam MM, Rahman A, Suzuki T, Fujita M (2016a) Polyamine and nitric oxide crosstalk: antagonistic effects on cadmium toxicity in mung bean plants through upregulating the metal detoxification, antioxidant defense, and methylglyoxal detoxification systems. Ecotoxicol Environ Saf 126:245–255. https://doi.org/10.1016/j.ecoenv.2015.12.026

    Article  CAS  PubMed  Google Scholar 

  • Nahar K, Rahman M, Hasanuzzaman M, Alam MM, Rahman A, Suzuki T, Fujita M (2016b) Physiological and biochemical mechanisms of spermine-induced cadmium stress tolerance in mung bean (Vigna radiata L.) seedlings. Environ Sci Pollut Res 23:21206–21218. https://doi.org/10.1007/s11356-016-7295-8

    Article  CAS  Google Scholar 

  • Nahar K, Hasanuzzaman M, Suzuki T, Fujita M (2017) Polyamines-induced aluminum tolerance in mung bean: a study on antioxidant defense and methylglyoxal detoxification systems. Ecotoxicology 26:58–73

    CAS  PubMed  Google Scholar 

  • Najeeb U, Ahmad W, Zia MH, Malik Z, Zhou W (2017) Enhancing the lead phytostabilization in wetland plant Juncus effusus L. through somaclonal manipulation and EDTA enrichment. Arab J Chem 10:3310–3317

    Google Scholar 

  • Nanda R, Agrawal V (2016) Elucidation of zinc and copper induced oxidative stress, DNA damage and activation of defence system during seed germination in Cassia angustifolia Vahl. Environ Exp Bot 125:31–41. https://doi.org/10.1016/j.envexpbot.2016.02.001

    Article  CAS  Google Scholar 

  • Nasibi F, Heidari T, Asrar Z, Mansoori H (2013) Effect of arginine pre-treatment on nickel accumulation and alleviation of the oxidative stress in Hyoscyamus niger. J Soil Sci Plant Nutr 13:680–689

    Google Scholar 

  • Nath S, Panda P, Mishra S (2014) Arsenic stress in rice: redox consequences and regulation by iron. Plant Physiol Biochem 80:203–210

    CAS  PubMed  Google Scholar 

  • Noctor G, Gomez L, Vanacker H, Foyer CH (2002) Interactions between biosynthesis, compartmentation and transport in the control of glutathione homeostasis and signalling. J Exp Bot 53:1283–1304. https://doi.org/10.1093/jexbot/53.372.1283

    Article  CAS  PubMed  Google Scholar 

  • Olaleye AO, Ogunkunle AO, Singh BN, Akinbola GE, Tabi FO, Fayinminu OO, Iji ME (2009) Ratios of nutrients in lowland rice grown on two iron toxic soils in Nigeria. J Plant Nutr 32:1–17

    Google Scholar 

  • Panda SK, Choudhury S (2005) Chromium stress in plants. Braz J Plant Physiol 17:95–102

    CAS  Google Scholar 

  • Panda SK, Baluška F, Matsumoto H (2009) Aluminum stress signaling in plants. Plant Signal Behav 4:592–597

    CAS  PubMed  PubMed Central  Google Scholar 

  • Panda SK, Choudhury S, Patra HK (2016) Heavy metal induced oxidative stress in plants: physiological and molecular perspectives. In: Tuteja N, Gill SS (eds) Abiotic stress response in plants. Wiley Online Library. https://doi.org/10.1002/9783527694570.ch11

    Google Scholar 

  • Pandey C, Khan E, Panthri M, Tripathi RD, Gupta M (2016) Impact of silicon on Indian mustard (Brassica juncea L.) root traits by regulating growth parameters, cellular antioxidants and stress modulators under arsenic stress. Plant Physiol Biochem 104:216–225. https://doi.org/10.1016/j.plaphy.2016.03.032

    Article  CAS  PubMed  Google Scholar 

  • Papadakis IE, Dimassi KN, Bosabadilis AM, Therios IN, Pataks A, Giannakoula A (2004) Boron toxicity in ‘Clementine’ mandarin plants grafted on two rootstocks. Plant Sci 166:539–547

    CAS  Google Scholar 

  • Patel A, Pandey V, Patra DD (2016) Metal absorption properties of Mentha spicata grown under tannery sludge amended soil-its effect on antioxidant system and oil quality. Chemosphere 147:67–73

    CAS  PubMed  Google Scholar 

  • Pontigo S, Godoy K, Jiménez H, Gutiérrez-Moraga A, Mora ML, Cartes P (2017) Silicon-mediated alleviation of aluminum toxicity by modulation of Al/Si uptake and antioxidant performance in ryegrass plants. Front Plant Sci 8:642

    PubMed  PubMed Central  Google Scholar 

  • Poonam S, Kaur H, Geetika S (2013) Effect of jasmonic acid on photosynthetic pigments and stress markers in Cajanus cajan (L.) Millsp. seedlings under copper stress. Am J Plant Sci 4:817

    Google Scholar 

  • Pramanick P, Chakraborty A, Raychaudhuri SS (2017) Phenotypic and biochemical alterations in relation to MT2 gene expression in Plantago ovata forsk under zinc stress. Biometals 30(2):171–184. https://doi.org/10.1007/s10534-017-9990-4

    Article  CAS  PubMed  Google Scholar 

  • Rahman A, Mostofa MG, Alam MM, Nahar K, Hasanuzzaman M, Fujita M (2015) Calcium mitigates arsenic toxicity in rice seedlings by reducing arsenic uptake and modulating the antioxidant defense and glyoxalase systems and stress markers. BioMed Res Int 2015:340812. https://doi.org/10.1155/2015/340812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahman A, Mostofa MG, Nahar K, Hasanuzzaman M, Fujita M (2016) Exogenous calcium alleviates cadmium-induced oxidative stress in rice (Oryza sativa L.) seedlings by regulating the antioxidant defense and glyoxalase systems. Braz J Bot 39:393–407. https://doi.org/10.1007/s40415-015-0240-0

    Article  Google Scholar 

  • Rajpoot R, Rani A, Srivastava RK, Pandey P, Dubey RS (2015) Terminalia arjuna bark extract alleviates nickel toxicity by suppressing its uptake and modulating antioxidative defence in rice seedlings. Protoplasma 253(6):1449–1462. https://doi.org/10.1007/s00709-015-0899-x

    Article  PubMed  Google Scholar 

  • Ramakrishna B, Rao SSR (2015) Foliar application of brassinosteroids alleviates adverse effects of zinc toxicity in radish (Raphanus sativus L.) plants. Protoplasma 252(2):665–677. https://doi.org/10.1007/s00709-014-0714-0

    Article  CAS  PubMed  Google Scholar 

  • Ramírez-Duarte WF, Kurobe T, Teh SJ (2017) Impairment of antioxidant mechanisms in Japanese Medaka (Oryzias latipes) by acute exposure to aluminum. Comp Biochem Physiol Toxicol Pharmacol 198:37–44

    Google Scholar 

  • Reddy PS, Jogeswar G, Rasineni GK, Maheswari M, Reddy AR, Varshney RK, Kishor PK (2015) Proline over-accumulation alleviates salt stress and protects photosynthetic and antioxidant enzyme activities in transgenic sorghum [Sorghum bicolor (L.) Moench]. Plant Physiol Biochem 94:104–113

    PubMed  Google Scholar 

  • Regier N, Larras F, Bravo AG, Ungureanu VG, Amouroux D, Cosio C (2013) Mercury bioaccumulation in the aquatic plant Elodea nuttallii in the field and in microcosm: accumulation in shoots from the water might involve copper transporters. Chemosphere 90:595–602

    CAS  PubMed  Google Scholar 

  • Rehman MZU, Rizwan M, Ali S, Ok YS, Ishaque W, Saifullah, Nawaz MF, Akmal F, Waqar M (2017) Remediation of heavy metal contaminated soils by using Solanum nigrum: a review. Ecotoxicol Environ Saf 143:236–248

    CAS  PubMed  Google Scholar 

  • Reid R (2010) Can we really increase yields by making crop plants tolerant to boron toxicity? Plant Sci 178:9–11

    CAS  Google Scholar 

  • Ren J-H, Sun H-J, Wang S-F, Luo J, Ma LQ (2014) Interactive effects of mercury and arsenic on their uptake, speciation and toxicity in rice seedling. Chemosphere 117:737–744

    CAS  PubMed  Google Scholar 

  • Rizwan M, Ali S, Abbas T, Rehman MZ, Hannan F, Keller C, Al-Wabel MI, Ok YS (2016) Cadmium minimization in wheat: a critical review. Ecotoxicol Environ Saf 130:43–53

    CAS  PubMed  Google Scholar 

  • Rizwan M, Imtiaz M, Dai Z, Mehmood S, Adeel M, Liu J, Tu S (2017) Nickel stressed responses of rice in Ni subcellular distribution, antioxidant production, and osmolyte accumulation. Environ Sci Pollut Res 24(25):20587–20598. https://doi.org/10.1007/s11356-017-9665-2

    Article  CAS  Google Scholar 

  • Rojas-Lillo Y, Alberdi M, Acevedo P, Inostroza-Blancheteau C, Rengel Z, de la Luz Mora M, Reyes-Díaz M (2014) Manganese toxicity and UV-B radiation differentially influence the physiology and biochemistry of highbush blueberry (Vaccinium corymbosum) cultivars. Funct Plant Biol 41:156–167

    CAS  PubMed  Google Scholar 

  • Sáez CA, Roncarati F, Moenne A, Moody AJ, Brown MT (2015) Copper-induced intra-specific oxidative damage and antioxidant responses in strains of the brown alga Ectocarpus siliculosus with different pollution histories Claudio. Aquat Toxicol 159:81–89

    PubMed  Google Scholar 

  • Sahrawat KL (2003) Iron toxicity in wetland rice: occurrence and management through integration of genetic tolerance with plant nutrition. J Indian Soc Soil Sci 51:409–417

    CAS  Google Scholar 

  • Sahrawat KL (2004) Iron toxicity in wetland rice and the role of other nutrients. J Plant Nutr 27:1471–1504

    CAS  Google Scholar 

  • Santos E, Santini JM, Paixao A, Júnior E, Lavres J, Campos M, Reis A (2017) Physiological highlights of manganese toxicity symptoms in soybean plants: Mn toxicity responses. Plant Physiol Biochem 113:6–19

    CAS  PubMed  Google Scholar 

  • Sarwar N, Imran M, Shaheen MR, Ishaque W, Kamran MA, Matloob A, Rehim A, Hussain S (2017) Phytoremediation strategies for soils contaminated with heavy metal: modifications and future perspectives. Chemosphere 171:710–721

    CAS  PubMed  Google Scholar 

  • Shah K, Kumar RG, Verma S, Dubey RS (2001) Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings. Plant Sci 161:1135–1144

    CAS  Google Scholar 

  • Shahid M, Dumat C, Pourrut B, Sabir M, Pinelli E (2014a) Assessing the effect of metal speciation on lead toxicity to Vicia faba pigment contents. J Geochem Explor 144:290–297

    CAS  Google Scholar 

  • Shahid M, Pinelli E, Pourrut B, Dumat C (2014b) Effect of organic ligands on lead-induced oxidative damage and enhanced antioxidant defense in the leaves of Vicia faba plants. J Geochem Explor 144:282–289

    CAS  Google Scholar 

  • Shahid M, Dumat C, Pourrut B, Abbas G, Shahid N, Pinelli E (2015) Role of metal speciation in lead induced oxidative stress to Vicia faba roots. Russ J Plant Physiol 6:448–454

    Google Scholar 

  • Shanker AK, Cervantes C, Loza-Tavera H, Avudainayagam S (2005) Chromium toxicity in plants. Environ Int 31:739–753. https://doi.org/10.1016/j.envint.2005.02.003

    Article  CAS  PubMed  Google Scholar 

  • Sharma SS, Dietz KJ (2009) The relationship between metal toxicity and cellular redox imbalance. Trends Plant Sci 14:43–50

    CAS  PubMed  Google Scholar 

  • Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012:217037. https://doi.org/10.1155/2012/217037

    Article  CAS  Google Scholar 

  • Sharma P, Kumar A, Bhardwaj R (2016) Plant steroidal hormone epibrassinolide regulate—heavy metal stress tolerance in Oryza sativa L. by modulating antioxidant defense expression. Environ Exp Bot 122:1–9

    Google Scholar 

  • Sigfridsson KGV, Bernát G, Mamedov F, Styring S (2004) Molecular interference of Cd2+ with photosystem II. Biochim Biophys Acta 1659:19–31

    CAS  PubMed  Google Scholar 

  • Singh K, Pandey SN (2011) Effect of nickel-stresses on uptake, pigments and antioxidative responses of water lettuce, Pistia stratiotes L. J Environ Biol 32:391–394

    CAS  PubMed  Google Scholar 

  • Singh AL, Jat RS, Chaudhari V, Bariya H, Sharma SJ (2010) Toxicities and tolerance of mineral elements boron, cobalt, molybdenum and nickel in crop plants. Plant Stress 4:31–56

    Google Scholar 

  • Singh VP, Srivastava PK, Prasad SM (2013) Nitric oxide alleviates arsenic-induced toxic effects in ridged Luffa seedlings. Plant Physiol Biochem 71:155–163

    CAS  PubMed  Google Scholar 

  • Singh M, Singh VP, Dubey G, Prasad SM (2015) Exogenous proline application ameliorates toxic effects of arsenate in Solanum melongena L. seedlings. Ecotoxicol Environ Saf 117:164–173

    CAS  PubMed  Google Scholar 

  • Singh N, Marwa N, Mishra SK, Mishra J, Verma PC, Rathaur S, Singh N (2016) Brevundimonas diminuta mediated alleviation of arsenic toxicity and plant growth promotion in Oryza sativa L. Ecotoxicol Environ Saf 125:25–34

    CAS  PubMed  Google Scholar 

  • Sinh S, Saxena R (2006) Effect of iron on lipid peroxidation, and enzymatic and non-enzymatic antioxidants and bacoside-A content in medicinal plant Bacopa monnieri L. Chemosphere 62:1340–1350

    Google Scholar 

  • Soltani E, Radjabian T, Abrishamchi P, Talei D (2016) Physiological and biochemical responses of Melissa officinalis L. to nickel stress and the protective role of salicylic acid. Arch Agron Soil Sci. https://doi.org/10.1080/03650340.2016.1207241

    Google Scholar 

  • Soylemezoglu G, Demir K, Inal A, Gunes A (2009) Effect of silicon on antioxidant and stomatal response of two grapevine (Vitis vinifera L.) rootstocks grown in boron toxic, saline and boron toxic-saline soil. Sci Hortic 123:240–246

    CAS  Google Scholar 

  • Srivastava S, Dubey RS (2011) Manganese-excess induces oxidative stress, lowers the pool of antioxidants and elevates activities of key antioxidative enzymes in rice seedlings. Plant Growth Regul 64:1–16

    CAS  Google Scholar 

  • Srivastava S, Tripathi RD, Dwivedi UN (2004) Synthesis of phytochelatins and modulation of antioxidants in response to cadmium stress in Cuscuta reflexa—an angiospermic parasite. J Plant Physiol 161:665–674

    CAS  PubMed  Google Scholar 

  • Stoeva N, Berova M, Zlatev ZL (2005) Effect of arsenic on some physiological parameters in bean plants. Biol Plant 49:293–296

    CAS  Google Scholar 

  • Štolfa I, Pfeiffer TŽ, Špoljarić D, Teklić T, Lončarić Z (2015) Heavy metal-induced oxidative stress in plants: response of the antioxidative system. In: Gupta D, Palma J, Corpas F (eds) Reactive oxygen species and oxidative damage in plants under stress. Springer, Cham. https://doi.org/10.1007/978-3-319-20421-5_6

    Chapter  Google Scholar 

  • Sun CL, Lu LL, Liu LJ, Liu WJ, Yu Y, Liu XX, Hu Y, Jin CW, Lin XY (2014) Nitrate reductase-mediated early nitric oxide burst alleviates oxidative damage induced by aluminum through enhancement of antioxidant defenses in roots of wheat (Triticum aestivum). New Phytol 201:1240–1250

    CAS  PubMed  Google Scholar 

  • Sundaramoorthy P, Chidambaram A, Ganesh KS, Unnikannan P, Baskaran L (2010) Chromium stress in paddy: (i) Nutrient status of paddy under chromium stress; (ii) Phytoremediation of chromium by aquatic and terrestrial weeds. C R Biol 333:597–607. https://doi.org/10.1016/j.crvi.2010.03.002

    Article  CAS  PubMed  Google Scholar 

  • Szollosi R, Varga IS, Erdei L, Mihalik E (2009) Cadmium-induced oxidative stress and antioxidative mechanisms in germinating Indian mustard (Brassica juncea L.) seeds. Ecotoxicol Environ Saf 72:1337–1342

    CAS  PubMed  Google Scholar 

  • Takahashi S, Murata N (2008) How do environmental stresses accelerate photoinhibition? Trends Plant Sci 13:178–182

    CAS  PubMed  Google Scholar 

  • Tangahu BV, Abdullah SRS, Basri H, Idris M, Anuar N, Mukhlisin M (2011) A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int J Chem Eng 2011:939161

    Google Scholar 

  • Tewari RK, Kumar P, Sharma PN (2008) Morphology and physiology of zinc-stressed mulberry plants. J Plant Nutr Soil Sci 171:286–294

    CAS  Google Scholar 

  • Theriault G, Michael P, Nkongolo K (2016) Comprehensive transcriptome analysis of response to nickel stress in White Birch (Betula papyrifera). PLoS One 11:e0153762. https://doi.org/10.1371/journal.pone.0153762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thounaojam TC, Panda P, Choudhury S, Patra HK, Panda SK (2013) Zinc ameliorates copper-induced oxidative stress in developing rice (Oryza sativa L.) seedlings. Protoplasma 251(1):61–69

    PubMed  Google Scholar 

  • Tombuloglu H, Semizoglu N, Sakcali S, Kekec G (2012) Boron induced expression of some stress-related genes in tomato. Chemosphere 86:433–438

    CAS  PubMed  Google Scholar 

  • Tripathy BC, Oelmüller R (2012) Reactive oxygen species generation and signaling in plants. Plant Signal Behav 7:1621–1633. https://doi.org/10.4161/psb.22455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Asshe F, Clijsters H (1990) Effects of metals on enzyme activity in plant. Plant Cell Environ 13:195–206

    Google Scholar 

  • Vatamaniuk OK, Mari S, Lu Y, Rea PA (2000) Mechanism of heavy metal ion activation of phytochelatin (PC) synthase. J Biol Chem 275:31451–31459. https://doi.org/10.1074/jbc.M002997200

    Article  CAS  PubMed  Google Scholar 

  • Venkatachalam P, Jayalakshmi N, Geetha N, Sahi SV, Sharma NC, Rene ER, Sarkar SK, Favas PJC (2017) Accumulation efficiency, genotoxicity and antioxidant defense mechanisms in medicinal plant Acalypha indica L. under lead stress. Chemosphere 171:544–553

    CAS  PubMed  Google Scholar 

  • Verbruggen N, Hermans C, Schat H (2009) Mechanisms to cope with arsenic or cadmium excess in plants. Curr Opin Plant Biol 12:364–372

    CAS  PubMed  Google Scholar 

  • Verma S, Dubey RS (2003) Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Sci 164:645–655

    CAS  Google Scholar 

  • Wang YX, Wu P, Wu YR, Yan XL (2002) Molecular marker analysis of manganese toxicity tolerance in rice under greenhouse conditions. Plant Soil 238:227–233

    CAS  Google Scholar 

  • Wang C, Zhang SH, Wang PF, Hou J, Zhang WJ, Li W (2009) The effect of excess Zn on mineral nutrition and antioxidative response in rapeseed seedlings. Chemosphere 75:1468–1476

    CAS  PubMed  Google Scholar 

  • Wani AS, Tahir I, Ahmad SS, Dar RA, Nisar S (2017) Efficacy of 24-epibrassinolide in improving the nitrogen metabolism and antioxidant system in chickpea cultivars under cadmium and/or NaCl stress. Sci Hortic 225:48–55. https://doi.org/10.1016/j.scienta.2017.06.063

    Article  CAS  Google Scholar 

  • Weng XY, Zhao LL, Zheng CJ, Zhu JW (2013) Characteristics of the hyperaccumulator plant Phytolacca acinosa (Phytolaccaceae) in response to excess manganese. J Plant Nutr 36:1355–1365

    CAS  Google Scholar 

  • Wu ZL, Banuelos GS, Lin ZQ, Liu Y, Yuan LX, Yin XB, Li M (2015a) Biofortification and phytoremediation of selenium in China. Front Plant Sci 6:136. https://doi.org/10.3389/fpls.2015.00136

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu X, He J, Ding H, Zhu Z, Chen J, Xu S, Zha D (2015b) Modulation of zinc-induced oxidative damage in Solanum melongena by 6-benzylaminopurine involves ascorbate–glutathione cycle metabolism. Environ Exp Bot 116:1–11

    CAS  Google Scholar 

  • Wu Z, Liu S, Zhao J, Wang F, Du Y, Zou S, Li H, Wen D, Huang Y (2017) Comparative responses to silicon and selenium in relation to antioxidant enzyme system and the glutathione-ascorbate cycle in flowering Chinese cabbage (Brassica campestris L. ssp. chinensis var. utilis) under cadmium stress. Environ Exp Bot 133:1–11

    Google Scholar 

  • Yadav SK (2010) Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. S Afr J Bot 76:167–179

    CAS  Google Scholar 

  • Yadav SK, Singla-Pareek SL, Reddy MK, Sopory SK (2005) Methylglyoxal detoxifcation by glyoxalase system: a survival strategy during environmental stresses. Physiol Mol Biol Plants 11:1–11

    CAS  Google Scholar 

  • Yadav SK, Singla-Pareek SL, Sopory SK (2008) An overview on the role of methylglyoxal and glyoxalases in plants. Drug Metabol Drug Interact 23(1–2):51–68

    CAS  PubMed  Google Scholar 

  • Yan R, Gao S, Yang W, Cao M, Wang S, Chen F (2008) Nickel toxicity induced antioxidant enzyme and phenylalanine ammonia-lyase activities in Jatropha curcas L. cotyledons. Plant Soil Environ 54(7):294–300

    CAS  Google Scholar 

  • Yang XE, Jin XF, Feng Y, Islam E (2005) Molecular mechanisms and genetic basis of heavy metal tolerance/hyperaccumulation in plants. J Integr Plant Biol 47:1025–1035

    CAS  Google Scholar 

  • Yin L, Mano J, Wang S, Tsuji W, Tanaka K (2010) The involvement of lipid peroxide-derived aldehydes in aluminum toxicity of tobacco roots. Plant Physiol 152:1406–1417

    CAS  PubMed  Google Scholar 

  • Yin L, Mano JI, Tanak K, Wang S, Zhang M, Deng X, Zhang S (2017) High level of reduced glutathione contributes to detoxification of lipid peroxide derived reactive carbonyl species in transgenic Arabidopsis overexpressing glutathione reductase under aluminum stress. Physiol Plant 161:211–223

    CAS  PubMed  Google Scholar 

  • Yusuf M, Fariduddin Q, Ahmad A (2011) 28-Homobrassinolide mitigates boron induced toxicity through enhanced antioxidant system in Vigna radiata plants. Chemosphere 85:1574–1584

    CAS  PubMed  Google Scholar 

  • Yusuf M, Khan TA, Fariduddin Q (2016) Interaction of epibrassinolide and selenium ameliorates the excess copper in Brassica juncea through altered proline metabolism and antioxidants. Ecotoxicol Environ Saf 129:25–34. https://doi.org/10.1016/j.ecoenv.2016.03.001

    Article  CAS  PubMed  Google Scholar 

  • Zagorchev L, Seal CE, Kranner I, Odjakova M (2013) A central role for thiols in plant tolerance to abiotic stress. Int J Mol Sci 14:7405–7432. https://doi.org/10.3390/ijms14047405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Gao X (2015) Heavy metals in surface sediments of the intertidal Laizhou Bay, Bohai Sea, China: distributions, sources and contamination assessment. Mar Pollut Bull 98:320–327

    PubMed  Google Scholar 

  • Zhang H, Hu LY, Li P, Hu KD, Jiang CX (2010) Hydrogen sulfide alleviated chromium toxicity in wheat. Biol Plant 54:743–747

    CAS  Google Scholar 

  • Zhang Y, Xu S, Yang S, Chen Y (2015) Salicylic acid alleviates cadmium-induced inhibition of growth and photosynthesis through upregulating antioxidant defense system in two melon cultivars (Cucumis melo L.). Protoplasma 252:911–924. https://doi.org/10.1007/s00709-014-0732-y

    Article  CAS  PubMed  Google Scholar 

  • Zhang T, Lu Q, Su C, Yang Y, Hu D, Xu Q (2017) Mercury induced oxidative stress, DNA damage, and activation of antioxidative system and Hsp70 induction in duckweed (Lemna minor). Ecotoxicol Environ Saf 143:46–56

    CAS  PubMed  Google Scholar 

  • Zhao FJ, McGrath SP, Meharg AA (2010) Arsenic as a food chain contaminant: mechanisms of plant uptake and metabolism and mitigation strategies. Annu Rev Plant Biol 61:535–559

    CAS  PubMed  Google Scholar 

  • Zhao X, Chen Q, Wang Y, Shen Z, Shen W, Xu X (2017) Hydrogen-rich water induces aluminum tolerance in maize seedlings by enhancing antioxidant capacities and nutrient homeostasis. Ecotoxicol Environ Saf 144:369–379

    CAS  PubMed  Google Scholar 

  • Zheng G, Lv HP, Gao S, Wang SR (2010) Effects of cadmium on growth and antioxidant responses in Glycyrrhiza uralensis seedlings. Plant Soil Environ 56:508–515

    CAS  Google Scholar 

  • Zhou G, Xu Y, Li J, Yang L, Liu J-Y (2006) Molecular analyses of the metallothionein gene family in rice (Oryza sativa L.). J Biochem Mol Biol 39:595–606

    CAS  PubMed  Google Scholar 

  • Zhou ZS, Huang SQ, Guo K, Mehta SK, Zhang PC, Yang ZM (2007) Metabolic adaptations to mercury-induced oxidative stress in roots of Medicago sativa L. J Inorg Biochem 101:1–9

    CAS  PubMed  Google Scholar 

  • Zhou B, Yao W, Wang S, Wang X, Jiang T (2014) The metallothionein gene, TaMT3, from Tamarix androssowii confers Cd2+ tolerance in Tobacco. Int J Mol Sci 15:10398–10409

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zouari M, Ahmed CB, Elloumi N, Bellassoued K, Delmail D, Labrousse P, Rouina BB (2016) Impact of proline application on cadmium accumulation, mineral nutrition and enzymatic antioxidant defense system of Olea europaea L. cv Chemlali exposed to cadmium stress. Ecotoxicol Environ Saf 128:195–205. https://doi.org/10.1016/j.ecoenv.2016.02.024

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirza Hasanuzzaman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Al Mahmud, J., Bhuyan, M.H.M.B., Anee, T.I., Nahar, K., Fujita, M., Hasanuzzaman, M. (2019). Reactive Oxygen Species Metabolism and Antioxidant Defense in Plants Under Metal/Metalloid Stress. In: Hasanuzzaman, M., Hakeem, K., Nahar, K., Alharby, H. (eds) Plant Abiotic Stress Tolerance. Springer, Cham. https://doi.org/10.1007/978-3-030-06118-0_10

Download citation

Publish with us

Policies and ethics