Skip to main content

Physiological and Technical Considerations of Extracorporeal CO2 Removal

  • Chapter
  • First Online:
Annual Update in Intensive Care and Emergency Medicine 2019

Part of the book series: Annual Update in Intensive Care and Emergency Medicine ((AUICEM))

  • 1717 Accesses

Abstract

Extracorporeal systems are increasingly used in severe hypoxemic and/or hypercapnic respiratory failure [1]. Although recent data have shown an advantage of high-flow veno-venous extracorporeal membrane oxygenation (VV-ECMO) in severe acute respiratory distress syndrome (ARDS) [2, 3], there is a paucity of evidence regarding the utility of extracorporeal CO2 removal (ECCO2R, often similarly used: low-flow ECMO) in patients with respiratory failure. Despite this fact, the number of available systems is dramatically increasing. In this chapter, we therefore provide an overview of the currently used technologies with advantages and disadvantages in the light of physiology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Karagiannidis C, Brodie D, Strassmann S, et al. Extracorporeal membrane oxygenation: evolving epidemiology and mortality. Intensive Care Med. 2016;42:889–96.

    Article  CAS  Google Scholar 

  2. Combes A, Hajage D, Capellier G, et al. Extracorporeal membrane oxygenation for severe acute respiratory distress syndrome. N Engl J Med. 2018;378:1965–75.

    Article  Google Scholar 

  3. Peek GJ, Mugford M, Tiruvoipati R, et al. Efficacy and economic assessment of conventional ventilatory support versus extracorporeal membrane oxygenation for severe adult respiratory failure (CESAR): a multicentre randomised controlled trial. Lancet. 2009;374:1351–63.

    Article  Google Scholar 

  4. Zanella A, Castagna L, Salerno D, et al. Respiratory electrodialysis. A novel, highly efficient extracorporeal CO2 removal technique. Am J Respir Crit Care Med. 2015;192:719–26.

    Article  CAS  Google Scholar 

  5. Karagiannidis C, Strassmann S, Philipp A, Muller T, Windisch W. Veno-venous extracorporeal CO2 removal improves pulmonary hypertension in acute exacerbation of severe COPD. Intensive Care Med. 2015;41:1509–10.

    Article  Google Scholar 

  6. Schaefer KE. Respiratory pattern and respiratory response to CO2. J Appl Physiol. 1958;13:1–14.

    Article  CAS  Google Scholar 

  7. Karagiannidis C, Lubnow M, Philipp A, et al. Autoregulation of ventilation with neurally adjusted ventilatory assist on extracorporeal lung support. Intensive Care Med. 2010;36:2038–44.

    Article  Google Scholar 

  8. Brochard L, Slutsky A, Pesenti A. Mechanical ventilation to minimize progression of lung injury in acute respiratory failure. Am J Respir Crit Care Med. 2017;195:438–42.

    Article  Google Scholar 

  9. Biscotti M, Gannon WD, Agerstrand C, et al. Awake extracorporeal membrane oxygenation as bridge to lung transplantation: a 9-year experience. Ann Thorac Surg. 2017;104:412–9.

    Article  Google Scholar 

  10. Crotti S, Bottino N, Ruggeri GM, et al. Spontaneous breathing during extracorporeal membrane oxygenation in acute respiratory failure. Anesthesiology. 2017;126:678–87.

    Article  Google Scholar 

  11. Crotti S, Bottino N, Spinelli E. Spontaneous breathing during veno-venous extracorporeal membrane oxygenation. J Thorac Dis. 2018;10:S661–9.

    Article  Google Scholar 

  12. Jeffries RG, Lund L, Frankowski B, Federspiel WJ. An extracorporeal carbon dioxide removal (ECCO2R) device operating at hemodialysis blood flow rates. Intensive Care Med Exp. 2017;5:41.

    Article  Google Scholar 

  13. Karagiannidis C, Kampe KA, Sipmann FS, et al. Veno-venous extracorporeal CO2 removal for the treatment of severe respiratory acidosis: pathophysiological and technical considerations. Crit Care. 2014;18:R124.

    Article  Google Scholar 

  14. Liu GM, Jin DH, Jiang XH, et al. Numerical and in vitro experimental investigation of the hemolytic performance at the off-design point of an axial ventricular assist pump. ASAIO J. 2016;62:657–65.

    Article  Google Scholar 

  15. Giersiepen M, Wurzinger LJ, Opitz R, Reul H. Estimation of shear stress-related blood damage in heart valve prostheses—in vitro comparison of 25 aortic valves. Int J Artif Organs. 1990;13:300–6.

    Article  CAS  Google Scholar 

  16. Fraser KH, Zhang T, Taskin ME, Griffith BP, Wu ZJ. A quantitative comparison of mechanical blood damage parameters in rotary ventricular assist devices: shear stress, exposure time and hemolysis index. J Biomech Eng. 2012;134:081002.

    Article  Google Scholar 

  17. Del Sorbo L, Pisani L, Filippini C, et al. Extracorporeal CO2 removal in hypercapnic patients at risk of noninvasive ventilation failure: a matched cohort study with historical control. Crit Care Med. 2015;43:120–7.

    Article  Google Scholar 

  18. Karagiannidis C, Strassmann S, Brodie D, et al. Impact of membrane lung surface area and blood flow on extracorporeal CO2 removal during severe respiratory acidosis. Intensive Care Med Exp. 2017;5:34.

    Article  Google Scholar 

  19. Zhang J, Chen X, Ding J, et al. Computational study of the blood flow in three types of 3D hollow fiber membrane bundles. J Biomech Eng. 2013;135:121009.

    Article  Google Scholar 

  20. Lubnow M, Philipp A, Foltan M, et al. Technical complications during veno-venous extracorporeal membrane oxygenation and their relevance predicting a system-exchange—retrospective analysis of 265 cases. PLoS One. 2014;9:e112316.

    Article  Google Scholar 

  21. Gartner MJ, Wilhelm CR, Gage KL, Fabrizio MC, Wagner WR. Modeling flow effects on thrombotic deposition in a membrane oxygenator. Artif Organs. 2000;24:29–36.

    Article  CAS  Google Scholar 

  22. Funakubo A, Taga I, McGillicuddy JW, Fukui Y, Hirschl RB, Bartlett RH. Flow vectorial analysis in an artificial implantable lung. ASAIO J. 2003;49:383–7.

    PubMed  Google Scholar 

  23. Kaesler A, Rosen M, Schmitz-Rode T, Steinseifer U, Arens J. Computational modeling of oxygen transfer in artificial lungs. Artif Organs. 2018;42:786–99.

    Article  CAS  Google Scholar 

  24. Eash HJ, Jones HM, Hattler BG, Federspiel WJ. Evaluation of plasma resistant hollow fiber membranes for artificial lungs. ASAIO J. 2004;50:491–7.

    Article  Google Scholar 

  25. Svitek RG, Frankowski BJ, Federspiel WJ. Evaluation of a pumping assist lung that uses a rotating fiber bundle. ASAIO J. 2005;51:773–80.

    Article  Google Scholar 

  26. Fernando UP, Thompson AJ, Potkay J, et al. A membrane lung design based on circular blood flow paths. ASAIO J. 2017;63:637–43.

    Article  Google Scholar 

  27. Schmidt M, Jaber S, Zogheib E, Godet T, Capellier G, Combes A. Feasibility and safety of low-flow extracorporeal CO2 removal managed with a renal replacement platform to enhance lung-protective ventilation of patients with mild-to-moderate ARDS. Crit Care. 2018;22:122.

    Article  Google Scholar 

  28. de Villiers Hugo J, Sharma AS, Ahmed U, Weerwind PW. Quantification of carbon dioxide removal at low sweep gas and blood flows. J Extra Corpor Technol. 2017;49:257–61.

    PubMed  PubMed Central  Google Scholar 

  29. Peperstraete H, Eloot S, Depuydt P, De Somer F, Roosens C, Hoste E. Low flow extracorporeal CO2 removal in ARDS patients: a prospective short-term crossover pilot study. BMC Anesthesiol. 2017;17:155.

    Article  Google Scholar 

  30. Batchinsky AI, Jordan BS, Regn D, et al. Respiratory dialysis: reduction in dependence on mechanical ventilation by venovenous extracorporeal CO2 removal. Crit Care Med. 2011;39:1382–7.

    Article  Google Scholar 

  31. Allardet-Servent J, Castanier M, Signouret T, Soundaravelou R, Lepidi A, Seghboyan JM. Safety and efficacy of combined extracorporeal CO2 removal and renal replacement therapy in patients with acute respiratory distress syndrome and acute kidney injury: The Pulmonary and Renal Support in Acute Respiratory Distress Syndrome Study. Crit Care Med. 2015;43:2570–81.

    Article  CAS  Google Scholar 

  32. Burki NK, Mani RK, Herth FJF, et al. A novel extracorporeal CO(2) removal system: results of a pilot study of hypercapnic respiratory failure in patients with COPD. Chest. 2013;143:678–86.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Sascha Groß-Hardt, Institute of Applied Medical Engineering, Helmholtz Institute Aachen, RWTH Aachen University, Germany for his contribution to the current work. The current work was supported by the German Federal Ministry of Education and Research (13GW0219B; Verbundprojekt tragbare Langzeitunterstützung der Lunge zur Behandlung der schweren COPD [p-ECCO2R]).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Karagiannidis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Karagiannidis, C., Hesselmann, F., Fan, E. (2019). Physiological and Technical Considerations of Extracorporeal CO2 Removal. In: Vincent, JL. (eds) Annual Update in Intensive Care and Emergency Medicine 2019. Annual Update in Intensive Care and Emergency Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-06067-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-06067-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-06066-4

  • Online ISBN: 978-3-030-06067-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics