Skip to main content

Increasing the Strength and Electrical Conductivity of AA6101 Aluminum by Nanostructuring

  • Conference paper
  • First Online:
Light Metals 2019

Abstract

Industrial scale nanostructuring via High Shear Deformation (HSD) can alter the properties of metals and alloys to increase their performance and extend their lifetimes. These factors in combination facilitate the use of lightweight alloys for transportation applications. This work examines how nanostructuring aluminum alloys can improve the fuel economy of vehicles by reducing the weight of electrical wires. Applying HSD non-isothermally alters precipitation , increasing the electrical conductivity of Al -Mg-Si alloys to 57% IACS while also increasing strength by over 50%. Microstructural analysis of Al alloys before and after HSD processing was performed to show how HSD changes grain size and precipitate size distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. X. Sauvage, N. Enikeev, R. Valiev, Y. Nasedkina, and M. Murashkin, “Atomic-scale analysis of the segregation and precipitation mechanisms in a severely deformed Al–Mg alloy,” Acta Mater., vol. 72, pp. 125–136, Jun. 2014.

    Google Scholar 

  2. X. Sauvage, E. V. Bobruk, M. Y. Murashkin, Y. Nasedkina, N. A. Enikeev, and R. Z. Valiev, “Optimization of electrical conductivity and strength combination by structure design at the nanoscale in Al–Mg–Si alloys,” Acta Mater., vol. 98, pp. 355–366, Oct. 2015.

    Google Scholar 

  3. M. Y. Bobruk, E.V., Murashkin and R. Z. Kazykhanov, V. U. Valiev, “Aging Behavior and Properties of Ultrafine-Grained Aluminum Alloys of Al-Mg-Si System,” Rev. Adv. Mater. Sci., vol. 31, no. 2, pp. 109–115, 2012.

    Google Scholar 

  4. G. Sha et al., “Strength, grain refinement and solute nanostructures of an Al–Mg–Si alloy (AA6060) processed by high-pressure torsion,” Acta Mater., vol. 63, pp. 169–179, Jan. 2014.

    Google Scholar 

  5. A. M. Mavlyutov, I. A. Kasatkin, M. Y. Murashkin, R. Z. Valiev, and T. S. Orlova, “Influence of the microstructure on the physicomechanical properties of the aluminum alloy Al–Mg–Si nanostructured under severe plastic deformation,” Phys. Solid State, vol. 57, no. 10, pp. 2051–2058, Nov. 2015.

    Google Scholar 

  6. M. Y. Murashkin, I. Sabirov, X. Sauvage, and R. Z. Valiev, “Nanostructured Al and Cu alloys with superior strength and electrical conductivity,” J. Mater. Sci., vol. 51, no. 1, pp. 33–49, Sep. 2015.

    Google Scholar 

  7. R. Z. Valiev and T. G. Langdon, “Principles of equal-channel angular pressing as a processing tool for grain refinement,” Prog. Mater. Sci., vol. 51, no. 7, pp. 881–981, 2006.

    Google Scholar 

  8. R. Z. Valiev, Y. Estrin, Z. Horita, T. G. Langdon, M. J. Zehetbauer, and Y. T. Zhu, “Fundamentals of Superior Properties in Bulk NanoSPD Materials,” Mater. Res. Lett., vol. 4, no. 1, pp. 1–21, Jan. 2016.

    Google Scholar 

  9. R. Valiev, R. Islamgaliev, and I. Alexandrov, “Bulk nanostructured materials from severe plastic deformation,” Prog. Mater. Sci., vol. 45, no. 2, pp. 103–189, 2000.

    Google Scholar 

  10. “Principles of ECAP–Conform as a continuous process for achieving grain refinement: Application to an aluminum alloy,” Acta Mater., vol. 58, no. 4, pp. 1379–1386, Feb. 2010.

    Google Scholar 

  11. R. Z. Valiev, Y. Estrin, Z. Horita, T. G. Langdon, M. J. Zehetbauer, and Y. Zhu, “Producing Bulk Ultrafine-Grained Materials by Severe Plastic Deformation: Ten Years Later,” JOM, vol. 68, no. 4, 2016.

    Google Scholar 

  12. N. Q. Vo, S. Odunuga, P. Bellon, and R. S. Averback, “Forced chemical mixing in immiscible alloys during severe plastic deformation at elevated temperatures,” Acta Mater., vol. 57, no. 10, pp. 3012–3019, Jun. 2009.

    Google Scholar 

  13. Y. Ashkenazy, N. Q. Vo, D. Schwen, R. S. Averback, and P. Bellon, “Shear induced chemical mixing in heterogeneous systems,” Acta Mater., vol. 60, no. 3, pp. 984–993, Feb. 2012.

    Google Scholar 

  14. S. N. Arshad et al., “Dependence of shear-induced mixing on length scale,” Scr. Mater., vol. 68, no. 3–4, pp. 215–218, Feb. 2013.

    Google Scholar 

  15. V. D. Sitdikov, M. Y. Murashkin, M. R. Khasanov, I. A. Kasatkin, P. S. Chizhov, and E. V Bobruk, “X-ray studies of aluminum alloy of the Al-Mg-Si system subjected to SPD processing,” IOP Conf. Ser. Mater. Sci. Eng., vol. 63, no. 1, p. 012087, Aug. 2014.

    Google Scholar 

  16. B. A. Rilee C. Meagher, Mathew L. Hayne, Julie M. DuClos, Casey F. Davis, Terry C. Lowe, Tamás Ungár, “Precipitation in ultrafine grain AA6101 aluminum,” Mater. Sci. Eng. A, 2019.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Terry C. Lowe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Meagher, R.C. et al. (2019). Increasing the Strength and Electrical Conductivity of AA6101 Aluminum by Nanostructuring. In: Chesonis, C. (eds) Light Metals 2019. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-05864-7_190

Download citation

Publish with us

Policies and ethics