Skip to main content

Revealing the Heterogeneous Nucleation and Growth Behaviour of Grains in Inoculated Aluminium Alloys During Solidification

  • Conference paper
  • First Online:
TMS 2019 148th Annual Meeting & Exhibition Supplemental Proceedings

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

  • 4929 Accesses

Abstract

An in situ X-ray radiographic study on the grain nucleation and grain growth of inoculated Al–10Cu and Al–20Cu alloys during isothermal melt solidification and directional solidification conditions with constant cooling rates has been carried out. The influence of additional level of inoculation particles, cooling rates, and temperature gradient on the nucleation rate and growth kinetics of grains have been quantitatively studied. The deterministic nature of the heterogeneous nucleation of aluminium grain on inoculant particles is revealed. Numerical microstructure models have been developed to simulate the nucleation and growth behavior of aluminum grains and a good agreement between the experimental results and simulation results have been achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Murty BS, Kori SA, Chakraborty M (2002) Grain refinement of aluminium and its alloys by heterogeneous nucleation and alloying. Int Mater Rev 47:3–29

    Article  CAS  Google Scholar 

  2. Quested TE (2004) Understanding mechanisms of grain refinement of aluminium alloys by inoculation. Mater Sci Technol 20:1357–1369

    Article  CAS  Google Scholar 

  3. Easton MA, Qian M, Prasad A, StJohn DH (2016) Recent advances in grain refinement of light metals and alloys. Curr Opin Solid State Mater Sci 20:13–24

    Article  CAS  Google Scholar 

  4. Greer AL (2016) Overview: application of heterogeneous nucleation in grain-refining of metals. J Chem Phys 145:211704

    Article  CAS  Google Scholar 

  5. Johnsson M, Backerud L, Sigworth G (1993) Study of the mechanism of grain refinement of aluminum after additions of Ti- and B-containing master alloys. Metall Trans A 24:481–491

    Article  Google Scholar 

  6. Johnsson M (1995) Grain refinement of aluminium studied by use of a thermal analytical technique. Thermochim Acta 256:107–121

    Article  CAS  Google Scholar 

  7. Iqbal N, van Dijk NH, Offerman SE, Moret MP, Katgerman L, Kearley GJ (2005) Real-time observation of grain nucleation and growth during solidification of aluminium alloys. Acta Mater 53:2875–2880

    Article  CAS  Google Scholar 

  8. Iqbal N, van Dijk NH, Offerman SE, Geerlofs N, Moret MP, Katgerman L, Kearley GJ (2006) In situ investigation of the crystallization kinetics and the mechanism of grain refinement in aluminum alloys. Mater Sci Eng A 416:18–32

    Article  Google Scholar 

  9. Iqbal N, van Dijk NH, Offerman SE, Moret MP, Katgerman L, Kearley GJ (2007) Nucleation kinetics during the solidification of aluminum alloys. J Non-Cryst Solids 353:3640–3643

    Article  CAS  Google Scholar 

  10. Reinhart G, Mangelinck-Noël N, Nguyen-Thi H, Schenk T, Gastaldi J, Billia B, Pino P, Härtwig J, Baruchel J (2005) Investigation of columnar–equiaxed transition and equiaxed growth of aluminium based alloys by X-ray radiography. Mater Sci Eng A 413–414:384–388

    Article  Google Scholar 

  11. Nguyen-Thi H, Reinhart G, Mangelinck-Noël N, Jung H, Billia B, Schenk T, Gastaldi J, Härtwig J, Baruchel J (2007) In-situ and real-time investigation of columnar-to-equiaxed transition in metallic alloy. Metall Mater Trans A 38:1458–1464

    Article  Google Scholar 

  12. Murphy AG, Mirihanage WU, Browne DJ, Mathiesen RH (2015) Equiaxed dendritic solidification and grain refiner potency characterised through in situ X-radiography. Acta Mater 95:83–89

    Article  CAS  Google Scholar 

  13. Prasad A, McDonald SD, Yasuda H, Nogita K, StJohn DH (2015) A real-time synchrotron X-ray study of primary phase nucleation and formation in hypoeutectic Al–Si alloys. J Cryst Growth 430:122–137

    Article  CAS  Google Scholar 

  14. Maxwell I, Hellawell A (1975) A simple model for grain refinement during solidification. Acta Metall 23:229–237

    Article  CAS  Google Scholar 

  15. Thévoz P, Desbiolles JL, Rappaz M (1989) Modeling of equiaxed microstructure formation in casting. Metall Trans A 20:311–322

    Article  Google Scholar 

  16. Desnain P, Fautrelle Y, Meyer JL, Riquet JP, Durand F (1990) Prediction of equiaxed grain density in multicomponent alloys, stirred electromagnetically. Acta Metall 38:1513–1523

    Article  CAS  Google Scholar 

  17. Greer AL, Bunn AM, Tronche A, Evans PV, Bristow DJ (2000) Modelling of inoculation of metallic melts: application to grain refinement of aluminium by Al–Ti–B. Acta Mater 48:2823–2835

    Article  CAS  Google Scholar 

  18. Easton MA, StJohn DH (2001) A model of grain refinement incorporating alloy constitution and potency of heterogeneous nucleant particles. Acta Mater 49:1867–1878

    Article  CAS  Google Scholar 

  19. Greer AL, Quested TE, Spalding JE (2002) Modelling of grain refinement in directional solidification. In: Schneider WA (ed) Light metals 2002. Minerals, Metals & Materials Soc, Warrendale, pp 687–694

    Google Scholar 

  20. Quested TE, Greer AL (2005) Grain refinement of Al alloys: mechanisms determining as-cast grain size in directional solidification. Acta Mater 53:4643–4653

    Article  CAS  Google Scholar 

  21. Böttger B, Eiken J, Apel M (2009) Phase-field simulation of microstructure formation in technical castings—a self-consistent homoenthalpic approach to the micro–macro problem. J Comput Phys 228:6784–6795

    Article  Google Scholar 

  22. Qian M, Cao P, Easton MA, McDonald SD, StJohn DH (2010) An analytical model for constitutional supercooling-driven grain formation and grain size prediction. Acta Mater 58:3262–3270

    Article  CAS  Google Scholar 

  23. Men H, Fan Z (2011) Effects of solute content on grain refinement in an isothermal melt. Acta Mater 59:2704–2712

    Article  CAS  Google Scholar 

  24. Shu D, Sun B, Mi J, Grant PS (2011) A quantitative study of solute diffusion field effects on heterogeneous nucleation and the grain size of alloys. Acta Mater 59:2135–2144

    Article  CAS  Google Scholar 

  25. StJohn DH, Qian M, Easton MA, Cao P (2011) The interdependence theory: the relationship between grain formation and nucleant selection. Acta Mater 59:4907–4921

    Article  CAS  Google Scholar 

  26. Du Q, Li YJ (2014) An extension of the Kampmann-Wagner numerical model towards as-cast grain size prediction of multicomponent aluminum alloys. Acta Mater 71:380–389

    Article  CAS  Google Scholar 

  27. Martorano M, Aguiar D, Arango J (2015) Multigrain and multiphase mathematical model for equiaxed solidification. Metall Mater Trans A 46:377–395

    Article  CAS  Google Scholar 

  28. Xu Y, Casari D, Du Q, Mathiesen RH, Arnberg L, Li Y (2017) Heterogeneous nucleation and grain growth of inoculated aluminium alloys: an integrated study by in-situ X-radiography and numerical modelling. Acta Mater 140:224–239

    Article  CAS  Google Scholar 

  29. Quested TE, Greer AL (2004) The effect of the size distribution of inoculant particles on as-cast grain size in aluminium alloys. Acta Mater 52:3859–3868

    Article  CAS  Google Scholar 

  30. Murphy AG, Browne DJ, Mirihanage WU, Mathiesen RH (2013) Combined in situ X-ray radiographic observations and post-solidification metallographic characterisation of eutectic transformations in Al–Cu alloy systems. Acta Mater 61:4559–4571

    Article  CAS  Google Scholar 

  31. Nguyen-Thi H, Reinhart G, Salloum-Abou-Jaoude G, Browne DJ, Murphy AG, Houltz Y, Li J, Voss D, Verga A, Mathiesen RH, Zimmermann G (2014) XRMON-GF experiments devoted to the in situ X-ray radiographic observation of growth process in microgravity conditions. Microgr Sci Technol 26:37–50

    Article  CAS  Google Scholar 

  32. Rakete C, Baumbach C, Goldschmidt A, Samberg D, Schroer CG, Breede F, Stenzel C, Zimmermann G, Pickmann C, Houltz Y, Lockowandt C, Svenonius O, Wiklund P, Mathiesen RH (2011) Compact X-ray microradiograph for in situ imaging of solidification processes: bringing in situ X-ray micro-imaging from the synchrotron to the laboratory. Rev Sci Instrum 82:105108

    Article  CAS  Google Scholar 

  33. Xu Y, Casari D, Mathiesen RH, Li Y (2018) Revealing the heterogeneous nucleation behavior of equiaxed grains of inoculated Al alloys during directional solidification. Acta Mater 149:312–325

    Article  CAS  Google Scholar 

  34. Prasad A, Liotti E, McDonald SD, Nogita K, Yasuda H, Grant PS, StJohn DH (2015) Real-time synchrotron X-ray observations of equiaxed solidification of aluminium alloys and implications for modelling. IOP Conf Seri Mater Sci Eng 84:012014

    Article  Google Scholar 

Download references

Acknowledgements

The financial support by The Research Council of Norway and industrial partners, for the PRIMAL project (project number: 236675), is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanjun Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, Y., Casari, D., Mathiesen, R.H., Li, Y. (2019). Revealing the Heterogeneous Nucleation and Growth Behaviour of Grains in Inoculated Aluminium Alloys During Solidification. In: TMS 2019 148th Annual Meeting & Exhibition Supplemental Proceedings. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-05861-6_154

Download citation

Publish with us

Policies and ethics