Skip to main content

A Closed-Form Solution of Rotation Invariant Spherical Harmonic Features in Diffusion MRI

  • Conference paper
  • First Online:
Computational Diffusion MRI (MICCAI 2019)

Abstract

Rotation invariant features are an indispensable tool for characterizing diffusion Magnetic Resonance Imaging (MRI) and in particular for brain tissue microstructure estimation. In this work, we propose a new mathematical framework for efficiently calculating a complete set of such invariants from any spherical function. Specifically, our method is based on the spherical harmonics series expansion of a given function of any order and can be applied directly to the resulting coefficients by performing a simple integral operation analytically. This enable us to derive a general closed-form equation for the invariants. We test our invariants on the diffusion MRI fiber orientation distribution function obtained from the diffusion signal both in-vivo and in synthetic data. Results show how it is possible to use these invariants for characterizing the white matter using a small but complete set of features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bloy, L., Verma, R.: Demons registration of high angular resolution diffusion images. In: 2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 1013–1016 (April 2010)

    Google Scholar 

  2. Caruyer, E., Verma, R.: On facilitating the use of hardi in population studies by creating rotation-invariant markers. Med. Image Anal. 20(1), 87–96 (2015)

    Article  Google Scholar 

  3. Dell’Acqua, F., Scifo, P., Rizzo, G., Catani, M., Simmons, A., Scotti, G., Fazio, F.: A modified damped richardson-lucy algorithm to reduce isotropic background effects in spherical deconvolution. Neuroimage 49(2), 1446–1458 (2010)

    Article  Google Scholar 

  4. Descoteaux, M., Angelino, E., Fitzgibbons, S., Deriche, R.: Regularized, fast, and robust analytical q-ball imaging. Magn. Reson. Med. 58(3), 497–510 (2007)

    Article  Google Scholar 

  5. Ehrenborg, R., Rota, G.C.: Apolarity and canonical forms for homogeneous polynomials. Eur. J. Comb. 14(3), 157–181 (1993)

    Article  MathSciNet  Google Scholar 

  6. Ghosh, A., Papadopoulo, T., Deriche, R.: Generalized invariants of a 4th order tensor: building blocks for new biomarkers in dMRI (2012)

    Google Scholar 

  7. Homeier, H.H., Steinborn, E.: Some properties of the coupling coefficients of real spherical harmonics and their relation to gaunt coefficients. J. Mol. Struct. THEOCHEM 368, 31–37 (1996) (Proceedings of the Second Electronic Computational Chemistry Conference)

    Article  Google Scholar 

  8. Kaden, E., Kelm, N.D., Carson, R.P., Does, M.D., Alexander, D.C.: Multi-compartment microscopic diffusion imaging. NeuroImage 139, 346–359 (2016)

    Article  Google Scholar 

  9. Kakarala, R., Mao, D.: A theory of phase-sensitive rotation invariance with spherical harmonic and moment-based representations. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 105–112 (June 2010)

    Google Scholar 

  10. Kondor, R.: A novel set of rotationally and translationally invariant features for images based on the non-commutative bispectrum (2007). arXiv:cs/0701127

  11. Negrinho, R.M.P., Aguiar, P.M.Q.: Shape representation via elementary symmetric polynomials: a complete invariant inspired by the bispectrum. In: 2013 IEEE International Conference on Image Processing, pp. 3518–3522 (Sept 2013)

    Google Scholar 

  12. Novikov, D.S., Veraart, J., Jelescu, I.O., Fieremans, E.: Rotationally-invariant mapping of scalar and orientational metrics of neuronal microstructure with diffusion MRI. NeuroImage 174, 518–538 (2018)

    Article  Google Scholar 

  13. Papadopoulo, T., Ghosh, A., Deriche, R.: Complete set of invariants of a 4th order tensor: The 12 tasks of HARDI from ternary quartics. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) Medical Image Computing and Computer-Assisted Intervention-MICCAI 2014, pp. 233–240. Springer International Publishing, Cham (2014)

    Chapter  Google Scholar 

  14. Reisert, M., Kellner, E., Dhital, B., Hennig, J., Kiselev, V.G.: Disentangling micro from mesostructure by diffusion MRI: A bayesian approach. NeuroImage (2016)

    Google Scholar 

  15. Schwab, E., Çetingül, H.E., Afsari, B., Yassa, M.A., Vidal, R.: Rotation invariant features for HARDI. In: Gee, J.C., Joshi, S., Pohl, K.M., Wells, W.M., Zöllei, L. (eds.) Information Processing in Medical Imaging, pp. 705–717. Springer, Berlin (2013)

    Google Scholar 

  16. Schwartz, J.T.: Fast probabilistic algorithms for verification of polynomial identities. J. ACM 27(4), 701–717 (1980)

    Article  MathSciNet  Google Scholar 

  17. Sotiropoulos, S.N., Jbabdi, S., Xu, J., Andersson, J.L., Moeller, S., Auerbach, E.J., Glasser, M.F., Hernandez, M., Sapiro, G., Jenkinson, M., et al.: Advances in diffusion MRI acquisition and processing in the human connectome project. Neuroimage 80, 125–143 (2013)

    Article  Google Scholar 

  18. Tournier, J.D., Calamante, F., Connelly, A.: Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution. NeuroImage 35(4), 1459–1472 (2007)

    Article  Google Scholar 

  19. Tuch, D.S.: Q-ball imaging. Magn. Reson. Med. 52(6), 1358–1372

    Article  Google Scholar 

  20. Zippel, R.: Probabilistic algorithms for sparse polynomials. In: Ng, E.W. (ed.) Symbolic and Algebraic Computation, pp. 216–226. Springer, Berlin (1979)

    Chapter  Google Scholar 

  21. Zucchelli, M., Descoteaux, M., Menegaz, G.: A generalized SMT-based framework for diffusion MRI microstructural model estimation. In: Computational Diffusion MRI, pp. 51–63. Springer (2018)

    Google Scholar 

Download references

Acknowledgements

This work has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (ERC Advanced Grant agreement No 694665 : CoBCoM—Computational Brain Connectivity Mapping). Data were provided by the Human Connectome Project, WU-Minn Consortium (Principal Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657) funded by the 16 NIH Institutes and Centers that support the NIH Blueprint for Neuroscience Research; and by the McDonnell Center for Systems Neuroscience at Washington University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauro Zucchelli .

Editor information

Editors and Affiliations

6 Relation Between Signal SH Coefficients and fODF SH Coefficients

6 Relation Between Signal SH Coefficients and fODF SH Coefficients

\(I^d_\mathbf{l } [f] \) is rotation invariant iff \(I^d_\mathbf{l } [f] =I^d_\mathbf{l } [R f] =I^d_\mathbf{l } [h]\). Given the rotated SH expansion \(h(\mathbf u )\) we can calculate \(I^d_\mathbf{l } [h] \) as

$$\begin{aligned} \begin{aligned} I^d_{l_1 \dots l_d}[h]&= \int _{S^2} \prod _{i=1}^d \left[ \sum _{m_i'=-l_i}^{l_i} g_{l_i m_i'} Y_{l_i}^{m_i'}(\mathbf u )\right] d \mathbf u \\&= \int _{S^2} \prod _{i=1}^d \left[ \sum _{m_i'=-l_i}^{l_i} \sum _{m_i=-l_i}^{l_i} c_{l_i m_i} D_{m_i',m_i}^{l_i}(R)Y_{l_i}^{m_i'}(\mathbf u ) \right] d \mathbf u \\&= \int _{S^2} \prod _{i=1}^d \left[ \sum _{m_i=-l_i}^{l_i} c_{l_i m_i} \sum _{m_i'=-l_i}^{l_i} D_{m_i',m_i}^{l_i}(R)Y_{l_i}^{m_i'}(\mathbf u ) \right] d \mathbf u \\&= \int _{S^2} \prod _{i=1}^d \left[ \sum _{m_i=-l_i}^{l_i} c_{l_i m_i} Y_l^{m}(R^{-1}{} \mathbf u ) \right] d \mathbf u \\&=\int _{S^2} \sum _{m_1=-l_1}^{l_1}\cdots \sum _{m_d=-l_d}^{l_d} c_{l_1 m_1} \cdots c_{l_d m_d} Y_{l_1}^{m_1}(R^{-1}{} \mathbf u ) \cdots Y_{l_d}^{m_d}(R^{-1}{} \mathbf u ) d \mathbf u \\&=\sum _{m_1=-l_1}^{l_1}\cdots \sum _{m_d=-l_d}^{l_d} c_{l_1 m_1} \cdots c_{l_d m_d} \int _{S^2} Y_{l_1}^{m_1}(R^{-1}{} \mathbf u ) \cdots Y_{l_d}^{m_d}(R^{-1}{} \mathbf u ) d \mathbf u \\&=\sum _{m_1=-l_1}^{l_1}\cdots \sum _{m_d=-l_d}^{l_d} c_{l_1 m_1} \cdots c_{l_d m_d} G(l_1,m_1 | \cdots |l_d,m_d)\\&= I^d_{l_1 \dots l_d}[f] \end{aligned} \end{aligned}$$
(17)

which proves the invariance property \(I^d_\mathbf{l } [f] =I^d_\mathbf{l } [R f]\).

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zucchelli, M., Deslauriers-Gauthier, S., Deriche, R. (2019). A Closed-Form Solution of Rotation Invariant Spherical Harmonic Features in Diffusion MRI. In: Bonet-Carne, E., Grussu, F., Ning, L., Sepehrband, F., Tax, C. (eds) Computational Diffusion MRI. MICCAI 2019. Mathematics and Visualization. Springer, Cham. https://doi.org/10.1007/978-3-030-05831-9_7

Download citation

Publish with us

Policies and ethics