Skip to main content

Structural Brain Changes Associated with Space

  • Reference work entry
  • First Online:
Handbook of Space Pharmaceuticals
  • 876 Accesses

Abstract

Space flight occurs in an extremely hostile environment, one for which man is inherently poorly adapted. As the duration of flight increases, more clinical syndromes and cerebral structural changes are being described, suggesting a direct relationship to time of exposure. There is now emerging evidence for involvement of the neuro-ocular system, cerebrospinal fluid, gray matter, and white matter. A definitive pathophysiological mechanism remains elusive with investigation hampered by the limited number of study subjects, the logistical restrictions of examination during flight, the lack of terrestrial analogues, and the possible variability of individual susceptibility to the environmental challenge. The common underlying thread appears to be duration of exposure to a microgravity environment although anticipated future mission activities including frequent extravehicular activities may pose additional challenges, potentially even acting in a synergistic fashion to injuries induced by microgravity. Although neurocognitive symptoms have been documented, the operational significance of this central nervous system involvement remains speculative. This review covers the current status of space-associated structural changes with an extrapolation to possible relevant terrestrial analogues and potential impact on future missions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alperin N, Bagci AM, Lee SH (2017) Spaceflight-induced changes in white matter hyperintensity burden in astronauts. Neurology 89(21):2187–2191

    Article  PubMed  Google Scholar 

  • Alsop DC, Detre JA, Golay X, Gunther M, Hendrikse J, Hernandez-Garcia L, Lu H, MacIntosh BJ, Parkes LM, Smits M, van Osch MJ, Wang DJ, Wong EC, Zaharchuk G (2015) Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: a consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia. Magn Reson Med 73(1):102–116

    Article  PubMed  Google Scholar 

  • Arngrim N, Schytz HW, Britze J, Amin FM, Vestergaard MB, Hougaard A, Wolfram F, de Koning PJ, Olsen KS, Secher NH, Larsson HB, Olesen J, Ashina M (2016) Migraine induced by hypoxia: an MRI spectroscopy and angiography study. Brain 139(Pt 3):723–737

    Article  PubMed  Google Scholar 

  • Arngrim N, Hougaard A, Schytz HW, Vestergaard MB, Britze J, Amin FM, Olsen KS, Larsson HB, Olesen J, Ashina M (2019) Effect of hypoxia on BOLD fMRI response and total cerebral blood flow in migraine with aura patients. J Cereb Blood Flow Metab 39(4):680–689

    Article  PubMed  Google Scholar 

  • Baker LM, Laidlaw DH, Conturo TE, Hogan J, Zhao Y, Luo X, Correia S, Cabeen R, Lane EM, Heaps JM, Bolzenius J, Salminen LE, Akbudak E, McMichael AR, Usher C, Behrman A, Paul RH (2014) White matter changes with age utilizing quantitative diffusion MRI. Neurology 83(3):247–252

    Article  PubMed  PubMed Central  Google Scholar 

  • Barnes DE, Kaup A, Kirby KA, Byers AL, Diaz-Arrastia R, Yaffe K (2014) Traumatic brain injury and risk of dementia in older veterans. Neurology 83(4):312–319

    Article  PubMed  PubMed Central  Google Scholar 

  • Bennett MH, Lehm JP, Mitchell SJ, Wasiak J (2010) Recompression and adjunctive therapy for decompression illness: a systematic review of randomized controlled trials. Anesth Analg 111(3):757–762

    Article  CAS  PubMed  Google Scholar 

  • Budde MD, Skinner NP (2018) Diffusion MRI in acute nervous system injury. J Magn Reson 292:137–148

    Article  CAS  PubMed  Google Scholar 

  • Busch MH, Vollmann W, Mateiescu S, Stolze M, Deli M, Garmer M, Gronemeyer DH (2015) Reproducibility of brain metabolite concentration measurements in lesion free white matter at 1.5 T. BMC Med Imaging 15:40

    Article  PubMed  PubMed Central  Google Scholar 

  • Conkin J, Abercromby AF, Dervay JP, Feiveson AH, Gernhardt ML, Norcross JR, Ploutz-Snyder R, Wessel JH 3rd (2015) Hypobaric decompression sickness treatment model. Aerosp Med Hum Perform 86(6):508–517

    Article  PubMed  Google Scholar 

  • Connolly DM, Lee VM (2015) Odds ratio meta-analysis and increased prevalence of white matter injury in healthy divers. Aerosp Med Hum Perform 86(11):928–935

    Article  PubMed  Google Scholar 

  • Connolly DM, Lee VM, Hodkinson PD (2018) White matter status of participants in altitude chamber research and training. Aerosp Med Hum Perform 89(9):777–786

    Article  PubMed  Google Scholar 

  • Fayed N, Modrego PJ, Morales H (2006) Evidence of brain damage after high-altitude climbing by means of magnetic resonance imaging. Am J Med 119(2):168 e161–168 e166

    Article  Google Scholar 

  • Frisoni GB, Galluzzi S, Pantoni L, Filippi M (2007) The effect of white matter lesions on cognition in the elderly – small but detectable. Nat Clin Pract Neurol 3(11):620–627

    Article  PubMed  Google Scholar 

  • Garrido E, Segura R, Capdevila A, Aldoma J, Rodriguez FA, Javierra C, Ventura JL (1995) New evidence from magnetic resonance imaging of brain changes after climbs at extreme altitude. Eur J Appl Physiol Occup Physiol 70(6):477–481

    Article  CAS  PubMed  Google Scholar 

  • Gevers S, van Osch MJ, Bokkers RP, Kies DA, Teeuwisse WM, Majoie CB, Hendrikse J, Nederveen AJ (2011) Intra- and multicenter reproducibility of pulsed, continuous and pseudo-continuous arterial spin labeling methods for measuring cerebral perfusion. J Cereb Blood Flow Metab 31(8):1706–1715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hundemer GL, Jersey SL, Stuart RP, Butler WP, Pilmanis AA (2012) Altitude decompression sickness incidence among U-2 pilots: 1994-2010. Aviat Space Environ Med 83(10):968–974

    Article  PubMed  Google Scholar 

  • Kottke R, Pichler Hefti J, Rummel C, Hauf M, Hefti U, Merz TM (2015) Morphological brain changes after climbing to extreme altitudes – a prospective cohort study. PLoS One 10(10):e0141097

    Article  PubMed  PubMed Central  Google Scholar 

  • Lawley JS, Alperin N, Bagci AM, Lee SH, Mullins PG, Oliver SJ, Macdonald JH (2014) Normobaric hypoxia and symptoms of acute mountain sickness: elevated brain volume and intracranial hypertension. Ann Neurol 75(6):890–898

    Article  CAS  PubMed  Google Scholar 

  • Lee AG, Mader TH, Gibson CR, Brunstetter TJ, Tarver WJ (2018) Space flight-associated neuro-ocular syndrome (SANS). Eye (Lond) 32(7):1164–1167

    Article  Google Scholar 

  • Lee JK, Koppelmans V, Riascos RF, Hasan KM, Pasternak O, Mulavara AP, Bloomberg JJ, Seidler RD (2019) Spaceflight-associated brain white matter microstructural changes and intracranial fluid redistribution. JAMA Neurol 76(4):412–419

    Article  PubMed  PubMed Central  Google Scholar 

  • Malle C, Quinette P, Laisney M, Bourrilhon C, Boissin J, Desgranges B, Eustache F, Pierard C (2013) Working memory impairment in pilots exposed to acute hypobaric hypoxia. Aviat Space Environ Med 84(8):773–779

    Article  PubMed  Google Scholar 

  • McGuire SA, Sherman PM, Profenna L, Grogan P, Sladky J, Brown A, Robinson A, Rowland L, Hong E, Patel B, Tate D, Kawano ES, Fox P, Kochunov P (2013) White matter hyperintensities on MRI in high-altitude U-2 pilots. Neurology 81(8):729–735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGuire SA, Sherman PM, Wijtenburg SA, Rowland LM, Grogan PM, Sladky JH, Robinson AY, Kochunov PV (2014a) White matter hyperintensities and hypobaric exposure. Ann Neurol 76(5):719–726

    Article  PubMed  PubMed Central  Google Scholar 

  • McGuire SA, Tate DF, Wood J, Sladky JH, McDonald K, Sherman PM, Kawano ES, Rowland LM, Patel B, Wright SN, Hong E, Rasmussen J, Willis AM, Kochunov PV (2014b) Lower neurocognitive function in U-2 pilots: relationship to white matter hyperintensities. Neurology 83(7):638–645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGuire SA, Boone GR, Sherman PM, Tate DF, Wood JD, Patel B, Eskandar G, Wijtenburg SA, Rowland LM, Clarke GD, Grogan PM, Sladky JH, Kochunov PV (2016) White matter integrity in high-altitude pilots exposed to hypobaria. Aerosp Med Hum Perform 87(12):983–988

    Article  PubMed  PubMed Central  Google Scholar 

  • McGuire JA, Sherman PM, Dean E, Bernot JM, Rowland LM, McGuire SA, Kochunov PV (2017a) Utilization of MRI for cerebral white matter injury in a hypobaric swine model-validation of technique. Mil Med 182(5):e1757–e1764

    Article  PubMed  Google Scholar 

  • McGuire SA, Wijtenburg SA, Sherman PM, Rowland LM, Ryan M, Sladky JH, Kochunov PV (2017b) Reproducibility of quantitative structural and physiological MRI measurements. Brain Behav 7(9):e00759

    Article  PubMed  PubMed Central  Google Scholar 

  • McGuire SA, Ryan MC, Sherman PM, Sladky JH, Rowland LM, Wijtenburg SA, Hong LE, Kochunov PV (2019) White matter and hypoxic hypobaria in humans. Hum Brain Mapp 40(11):3165–3173

    Article  PubMed  PubMed Central  Google Scholar 

  • Riascos RF, Kamali A, Hakimelahi R, Mwangi B, Rabiei P, Seidler RD, Behzad BB, Keser Z, Kramer LA, Hasan KM (2019) Longitudinal analysis of quantitative brain MRI in astronauts following microgravity exposure. J Neuroimaging 29(3):323–330

    Article  PubMed  Google Scholar 

  • Rice GM, Vacchiano CA, Moore JL Jr, Anderson DW (2003) Incidence of decompression sickness in hypoxia training with and without 30-min O2 prebreathe. Aviat Space Environ Med 74(1):56–61

    PubMed  Google Scholar 

  • Roberts DR, Albrecht MH, Collins HR, Asemani D, Chatterjee AR, Spampinato MV, Zhu X, Chimowitz MI, Antonucci MU (2017) Effects of spaceflight on astronaut brain structure as indicated on MRI. N Engl J Med 377(18):1746–1753

    Article  PubMed  Google Scholar 

  • Roberts DR, Asemani D, Nietert PJ, Eckert MA, Inglesby DC, Bloomberg JJ, George MS, Brown TR (2019) Prolonged microgravity affects human brain structure and function. AJNR Am J Neuroradiol 40(11):1878–1885

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ryan MC, Kochunov P, Sherman PM, Rowland LM, Wijtenburg SA, Acheson A, Hong LE, Sladky J, McGuire S (2018a) Miniature pig magnetic resonance spectroscopy model of normal adolescent brain development. J Neurosci Methods 308:173–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryan MC, Sherman P, Rowland LM, Wijtenburg SA, Acheson A, Fieremans E, Veraart J, Novikov DS, Hong LE, Sladky J, Peralta PD, Kochunov P, McGuire SA (2018b) Miniature pig model of human adolescent brain white matter development. J Neurosci Methods 296:99–108

    Article  PubMed  Google Scholar 

  • Strangman GE, Sipes W, Beven G (2014) Human cognitive performance in spaceflight and analogue environments. Aviat Space Environ Med 85(10):1033–1048

    Article  PubMed  Google Scholar 

  • Tate DF, Jefferson AL, Brickman AM, Hoth KF, Gunstad J, Bramley K, Paul RH, Poppas A, Cohen RA (2008) Regional white matter signal abnormalities and cognitive correlates among geriatric patients with treated cardiovascular disease. Brain Imaging Behav 2(3):200–206

    Article  PubMed  PubMed Central  Google Scholar 

  • Todnem K, Skeidsvoll H, Svihus R, Rinck P, Riise T, Kambestad BK, Aarli JA (1991) Electroencephalography, evoked potentials and MRI brain scans in saturation divers. An epidemiological study. Electroencephalogr Clin Neurophysiol 79(4):322–329

    Article  CAS  PubMed  Google Scholar 

  • Usui C, Inoue Y, Kimura M, Kirino E, Nagaoka S, Abe M, Nagata T, Arai H (2004) Irreversible subcortical dementia following high altitude illness. High Alt Med Biol 5(1):77–81

    Article  PubMed  Google Scholar 

  • Van Mil AH, Spilt A, Van Buchem MA, Bollen EL, Teppema L, Westendorp RG, Blauw GJ (2002) Nitric oxide mediates hypoxia-induced cerebral vasodilation in humans. J Appl Physiol (1985) 92(3):962–966

    Article  Google Scholar 

  • Van Ombergen A, Jillings S, Jeurissen B, Tomilovskaya E, Ruhl RM, Rumshiskaya A, Nosikova I, Litvinova L, Annen J, Pechenkova EV, Kozlovskaya IB, Sunaert S, Parizel PM, Sinitsyn V, Laureys S, Sijbers J, Eulenburg PZ, Wuyts FL (2018) Brain tissue-volume changes in cosmonauts. N Engl J Med 379(17):1678–1680

    Article  PubMed  Google Scholar 

  • Van Ombergen A, Jillings S, Jeurissen B, Tomilovskaya E, Rumshiskaya A, Litvinova L, Nosikova I, Pechenkova E, Rukavishnikov I, Manko O, Danylichev S, Ruhl RM, Kozlovskaya IB, Sunaert S, Parizel PM, Sinitsyn V, Laureys S, Sijbers J, Eulenburg PZ, Wuyts FL (2019) Brain ventricular volume changes induced by long-duration spaceflight. Proc Natl Acad Sci U S A 116(21):10531–10536

    Article  PubMed  PubMed Central  Google Scholar 

  • Veeramuthu V, Narayanan V, Kuo TL, Delano-Wood L, Chinna K, Bondi MW, Waran V, Ganesan D, Ramli N (2015) Diffusion tensor imaging parameters in mild traumatic brain injury and its correlation with early neuropsychological impairment: a longitudinal study. J Neurotrauma 32(19):1497–1509

    Article  PubMed  PubMed Central  Google Scholar 

  • Vollmar C, O’Muircheartaigh J, Barker GJ, Symms MR, Thompson P, Kumari V, Duncan JS, Richardson MP, Koepp MJ (2010) Identical, but not the same: intra-site and inter-site reproducibility of fractional anisotropy measures on two 3.0T scanners. NeuroImage 51(4):1384–1394

    Article  PubMed  Google Scholar 

  • Webb JT, Pilmanis AA (2011) Fifty years of decompression sickness research at Brooks AFB, TX: 1960–2010. Aviat Space Environ Med 82(5 Suppl):A1–A25

    Article  CAS  PubMed  Google Scholar 

  • Wiebenga OT, Klauser AM, Nagtegaal GJ, Schoonheim MM, Barkhof F, Geurts JJ, Pouwels PJ (2014) Longitudinal absolute metabolite quantification of white and gray matter regions in healthy controls using proton MR spectroscopic imaging. NMR Biomed 27(3):304–311

    Article  CAS  PubMed  Google Scholar 

  • Wijtenburg SA, Near J, Korenic SA, Gaston FE, Chen H, Mikkelsen M, Chen S, Kochunov P, Hong LE, Rowland LM (2019) Comparing the reproducibility of commonly used magnetic resonance spectroscopy techniques to quantify cerebral glutathione. J Magn Reson Imaging 49(1):176–183

    Article  PubMed  Google Scholar 

  • Wojcik P, Kini A, Al Othman B, Galdamez LA, Lee AG (2020) Spaceflight associated neuro-ocular syndrome. Curr Opin Neurol 33(1):62–67

    Article  PubMed  Google Scholar 

  • Wu X, Kirov II, Gonen O, Ge Y, Grossman RI, Lui YW (2016) MR imaging applications in mild traumatic brain injury: an imaging update. Radiology 279(3):693–707

    Article  PubMed  Google Scholar 

  • Zhang H, Lin J, Sun Y, Huang Y, Ye H, Wang X, Yang T, Jiang X, Zhang J (2012) Compromised white matter microstructural integrity after mountain climbing: evidence from diffusion tensor imaging. High Alt Med Biol 13(2):118–125

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen McGuire .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

McGuire, S. (2022). Structural Brain Changes Associated with Space. In: Pathak, Y.V., Araújo dos Santos, M., Zea, L. (eds) Handbook of Space Pharmaceuticals. Springer, Cham. https://doi.org/10.1007/978-3-030-05526-4_48

Download citation

Publish with us

Policies and ethics