Skip to main content

On the Probabilistic Cauchy Theory for Nonlinear Dispersive PDEs

  • Chapter
  • First Online:
Book cover Landscapes of Time-Frequency Analysis

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

Abstract

In this note, we review some of the recent developments in the well-posedness theory of nonlinear dispersive partial differential equations with random initial data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For conciseness, we restrict our attention to the defocusing case in the following.

  2. 2.

    In fact, there are other critical regularities induced by the Galilean invariance for (1.1.1) and the Lorentzian symmetry for (1.1.2) below which the equations are ill-posed; see [25, 42, 51, 56]. We point out, however, that these additional critical regularities are relevant only when the dimension is low and/or the degree p is small. For example, for NLS (1.1.1) with an algebraic nonlinearity (\(p \in 2\mathbb {N}+ 1\)), the critical regularity induced by the Galilean invariance is relevant (i.e., higher than the scaling-critical regularity \(s_\text {crit}\) in (1.1.4)) only for \(d = 1\) and \(p = 3\). For simplicity, we only consider the scaling-critical regularities in the following.

  3. 3.

    Namely, local-in-time existence of unique solutions almost surely with respect to given random initial data.

  4. 4.

    Hereafter, we use Z to denote various normalizing constants so that the resulting measure is a probability measure provided that it makes sense.

  5. 5.

    Here, we added the mass in the exponent to avoid a problem at the zeroth frequency in (1.2.8) below.

  6. 6.

    In the following, we drop the harmless factor of \(2\pi \).

  7. 7.

    When \( d\ge 3\), it is known that the Gibbs measure \(\rho \) can be constructed only for \(d = 3\) and \(p = 3\). In this case, the resulting Gibbs measure \(\rho \) is not absolutely continuous with respect to the Gaussian measure \(\mu _1\). See [2] for the references therein, regarding the construction of the Gibbs measure (the \(\varPhi ^4_3\) measure) in the real-valued setting.

  8. 8.

    In terms of the Besov spaces \(B^\sigma _{p, \infty }\), \(p < \infty \), we see that \(u_0^\omega \) in (1.2.8) lies almost surely in the critical spaces \(B^0_{2, \infty }\). See [4].

  9. 9.

    In the real-valued setting, we also need to impose that \(g_{ -n} = \overline{g_{n}}\) so that, given a real-valued function \(u_0\), the resulting randomization \(u_0^\omega \) remains real-valued. A similar comment applies to the randomization (1.2.13) introduced for functions on \(\mathbb {R}^d\).

  10. 10.

    See (1.2.16) below for the scaling condition on \(\mathbb {R}^d\).

  11. 11.

    One can choose \(C_\varepsilon = \big (\frac{1}{c} \log \frac{C}{\varepsilon }\big )^\frac{3}{2}\).

  12. 12.

    It is also called the unit-scale randomization in [33].

  13. 13.

    For the local-in-time argument, the defocusing/focusing nature of the equation does not play any role.

  14. 14.

    Needless to say, the solution v is random since it depends on the random linear solution \(z^\omega \). For simplicity, however, we suppress the superscript \(\omega \).

  15. 15.

    Note that, due to the spatial integration in (1.3.17), the largest two frequencies of the dyadic pieces must be comparable.

  16. 16.

    In fact, almost sure norm inflation at \((u_0^\omega , u_1^\omega )\) holds.

  17. 17.

    This argument is not limited to nonlinear dispersive PDEs. For instance, see [45] for an application of this argument in studying a stochastic parabolic PDE.

  18. 18.

    See Theorems 1.1 and 1.2 for such nonlinear smoothing in the probabilistic setting.

  19. 19.

    Namely, the local existence time depends only on the norm of initial data.

  20. 20.

    We also mention a recent work by Dodson–Lührmann–Mendelson [34] that appeared after the completion of this note. The main new idea in [34] is to adapt the functional framework for the derivative NLS and Schrödinger maps to study the perturbed NLS (1.3.14).

  21. 21.

    Here, we assume that \(z_3\) has positive regularity. For example, we know that \(z_3\) has spatial regularity at least \(3\alpha - \frac{9}{2} + 1-\varepsilon \) and hence \(\alpha > \frac{7}{6}\) suffices.

  22. 22.

    Recall the following paraproduct decomposition of the product fg of two functions f and g:

    Since the paraproducts and always make sense as distributions, it suffices to give a meaning to the resonant product in a probabilistic manner.

  23. 23.

    Here, the implicit constant depends on the choice of \(\lambda \) in (1.3.29), which needs to be chosen in terms of N. See [14] for more on this issue.

  24. 24.

    Things are not as simple as stated here due to the unboundedness of the linear solution operator on \(L^r\), \(r\ne 2\), for dispersive equations. In the case of the nonlinear heat equation, however, this heuristics can be seen more clearly. Consider the following nonlinear heat equation on \(\mathbb {R}^d\):

    $$\begin{aligned} \partial _tu = \varDelta u - |u|^{p-1}u \end{aligned}$$
    (1.4.1)

    with initial data \(u_0 \in L^2(\mathbb {R}^d)\). In general, (when \(4 < d(p-1)\) for example), we do not know how to construct a solution with initial data in \(L^2(\mathbb {R}^d)\). By randomizing the initial data \(u_0\) as in (1.2.13), we see that the randomized initial data \(u_0^\omega \) lies almost surely in \(L^r(\mathbb {R}^d)\) for any finite \(r\ge 2\). Then, by taking \(r > \frac{d(p-1)}{2}\), we can apply the deterministic subcritical local well-posedness result in [17] to conclude (rather trivial) almost sure local well-posedness of (1.4.1) with respect to the Wiener randomization \(u_0^\omega \). This is an instance of “making the problem subcritical” by randomization.

  25. 25.

    At this point, we do not know how to apply the theory of regularity structures to study dispersive PDEs, partly because we do not know how to lift the Duhamel integral operator for dispersive PDEs to regularity structures.

  26. 26.

    This is the so-called stochastic convolution.

  27. 27.

    For example, for the subcritical SQE on \(\mathbb {T}^3\), the second-order iterate (an analogue of \(z_3\) in (1.3.21)) gains one derivative as compared to the stochastic convolution.

  28. 28.

    At least on \(\mathbb {T}^d\). On \(\mathbb {R}^d\), there is a limitation on the gain of integrability. See [30, 68].

References

  1. S. Albeverio, A. Cruzeiro, Global flows with invariant (Gibbs) measures for Euler and Navier-Stokes two dimensional fluids, Comm. Math. Phys. 129 (1990) 431–444.

    Article  MathSciNet  MATH  Google Scholar 

  2. S. Albeverio, S. Kusuoka The invariant measure and the flow associated to the \(\Phi ^4_3\)-quantum field model, arXiv:1711.07108 [math.PR].

  3. A. Ayache, N. Tzvetkov, \(L^p\)properties for Gaussian random series, Trans. Amer. Math. Soc. 360 (2008), no. 8, 4425–4439.

    Google Scholar 

  4. Á. Bényi, T. Oh, Modulation spaces, Wiener amalgam spaces, and Brownian motions, Adv. Math. 228 (2011), no. 5, 2943–2981.

    Article  MathSciNet  MATH  Google Scholar 

  5. Á. Bényi, T. Oh, O. Pocovnicu, Wiener randomization on unbounded domains and an application to almost sure well-posedness of NLS, Excursions in harmonic analysis, Vol. 4, 3–25, Appl. Numer. Harmon. Anal., Birkhäuser/Springer, Cham, 2015.

    Google Scholar 

  6. Á. Bényi, T. Oh, O. Pocovnicu, On the probabilistic Cauchy theory of the cubic nonlinear Schrödinger equation on \(\mathbb{R}^3\), \(d\ge 3\), Trans. Amer. Math. Soc. Ser. B 2 (2015), 1–50.

    Google Scholar 

  7. Á. Bényi, T. Oh, O. Pocovnicu, Higher order expansions for the probabilistic local Cauchy theory of the cubic nonlinear Schrödinger equation on \(\mathbb{R}^3\), to appear in Trans. Amer. Math. Soc.

    Google Scholar 

  8. J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations, Geom. Funct. Anal. 3 (1993), 107–156.

    Google Scholar 

  9. J. Bourgain, Periodic nonlinear Schrödinger equation and invariant measures, Comm. Math. Phys. 166 (1994), no. 1, 1–26.

    Article  MathSciNet  MATH  Google Scholar 

  10. J. Bourgain, Invariant measures for the \(2D\)-defocusing nonlinear Schrödinger equation, Comm. Math. Phys. 176 (1996), no. 2, 421–445.

    Google Scholar 

  11. J. Bourgain, Invariant measures for the Gross-Piatevskii equation, J. Math. Pures Appl. 76 (1997), no. 8, 649–702.

    Article  MathSciNet  MATH  Google Scholar 

  12. J. Bourgain, Refinements of Strichartz’ inequality and applications to 2D-NLS with critical nonlinearity, Internat. Math. Res. Notices 1998, no. 5, 253–283.

    Article  MATH  Google Scholar 

  13. J. Bourgain, A. Bulut, Invariant Gibbs measure evolution for the radial nonlinear wave equation on the 3d ball, J. Funct. Anal. 266 (2014), no. 4, 2319–2340.

    Article  MathSciNet  MATH  Google Scholar 

  14. J. Bourgain, A. Bulut, Almost sure global well posedness for the radial nonlinear Schrödinger equation on the unit ball I: the 2D case, Ann. Inst. H. Poincaré Anal. Non Linéaire 31 (2014), no. 6, 1267–1288.

    Article  MathSciNet  MATH  Google Scholar 

  15. J. Bourgain, A. Bulut, Almost sure global well posedness for the radial nonlinear Schrödinger equation on the unit ball II: the 3D case, J. Eur. Math. Soc. (JEMS) 16 (2014), no. 6, 1289–1325.

    Article  MathSciNet  MATH  Google Scholar 

  16. J. Bourgain, C. Demeter, The proof of the \(l^2\)decoupling conjecture, Ann. of Math. 182 (2015), no. 1, 351–389.

    Google Scholar 

  17. H. Brezis, T. Cazenave, A nonlinear heat equation with singular initial data, J. Anal. Math. 68 (1996), 277–304.

    Article  MathSciNet  MATH  Google Scholar 

  18. N. Burq, L. Thomann, N. Tzvetkov, Long time dynamics for the one dimensional non linear Schrödinger equation, Ann. Inst. Fourier (Grenoble) 63 (2013), no. 6, 2137–2198.

    Article  MathSciNet  MATH  Google Scholar 

  19. N. Burq, L. Thomann, N. Tzvetkov, Global infinite energy solutions for the cubic wave equation, Bull. Soc. Math. France 143 (2015), no. 2, 301–313.

    Article  MathSciNet  MATH  Google Scholar 

  20. N. Burq, L. Thomann, N. Tzvetkov, Remarks on the Gibbs measures for nonlinear dispersive equations, Ann. Fac. Sci. Toulouse Math. 27 (2018), no. 3, 527–597.

    Google Scholar 

  21. N. Burq, N. Tzvetkov, Random data Cauchy theory for supercritical wave equations. I. Local theory, Invent. Math. 173 (2008), no. 3, 449–475.

    Article  MathSciNet  MATH  Google Scholar 

  22. N. Burq, N. Tzvetkov, Probabilistic well-posedness for the cubic wave equation, J. Eur. Math. Soc. (JEMS) 16 (2014), no. 1, 1–30.

    Article  MathSciNet  MATH  Google Scholar 

  23. R. Catellier, K. Chouk, Paracontrolled distributions and the 3-dimensional stochastic quantization equation, Ann. Probab. 46 (2018), no. 5, 2621–2679.

    Google Scholar 

  24. A. Choffrut, O. Pocovnicu, Ill-posedness of the cubic nonlinear half-wave equation and other fractional NLS on the real line, Internat. Math. Res. Not. Volume 2018, no.3, 699–738.

    MathSciNet  MATH  Google Scholar 

  25. M. Christ, J. Colliander, T. Tao, Instability of the periodic nonlinear Schrödinger equation, arXiv:math/0311227v1 [math.AP].

  26. M. Christ, J. Colliander, T. Tao, Ill-posedness for nonlinear Schrödinger and wave equations, arXiv:math/0311048 [math.AP].

  27. J. Colliander, T. Oh, Almost sure well-posedness of the cubic nonlinear Schrödinger equation below \(L^2(\mathbb{T} )\), Duke Math. J. 161 (2012), no. 3, 367–414.

    Google Scholar 

  28. G. Da Prato, A. Debussche, Two-dimensional Navier-Stokes equations driven by a space-time white noise, J. Funct. Anal. 196 (2002), no. 1, 180–210.

    Article  MathSciNet  MATH  Google Scholar 

  29. G. Da Prato, J. Zabczyk, Stochastic equations in infinite dimensions, Second edition. Encyclopedia of Mathematics and its Applications, 152. Cambridge University Press, Cambridge, 2014. xviii+493 pp.

    Google Scholar 

  30. A. de Bouard, A. Debussche, The stochastic nonlinear Schrödinger equation in \(H^1\), Stochastic Anal. Appl. 21 (2003), no. 1, 97–126.

    Google Scholar 

  31. A.S. de Suzzoni, Large data low regularity scattering results for the wave equation on the Euclidean space, Comm. Partial Differential Equations 38 (2013), no. 1, 1–49.

    Article  MathSciNet  MATH  Google Scholar 

  32. A.S. de Suzzoni, F. Cacciafesta, Invariance of Gibbs measures under the flows of Hamiltonian equations on the real line, arXiv:1509.02093 [math.AP].

  33. B. Dodson, J. Lührmann, D. Mendelson, Almost sure scattering for the 4D energy-critical defocusing nonlinear wave equation with radial data, arXiv:1703.09655 [math.AP].

  34. B. Dodson, J. Lührmann, D. Mendelson, Almost sure local well-posedness and scattering for the 4D cubic nonlinear Schrödinger equation, arXiv:1802.03795 [math.AP].

  35. H. Feichtinger, Modulation spaces of locally compact Abelian groups, Technical report, University of Vienna (1983). in Proc. Internat. Conf. on Wavelets and Applications (Chennai, 2002), R. Radha, M. Krishna, S. Thangavelu (eds.), New Delhi Allied Publishers (2003), 1–56.

    Google Scholar 

  36. H. Feichtinger and K. Gröchenig, Banach spaces related to integrable group representations and their atomic decompositions, I, J. Func. Anal. 86 (1989), 307–340.

    Article  MathSciNet  MATH  Google Scholar 

  37. H. Feichtinger and K. Gröchenig, Banach spaces related to integrable group representations and their atomic decompositions, II, Monatsh. Math. 108 (1989), 129–148.

    Article  MathSciNet  MATH  Google Scholar 

  38. J. Forlano, T. Oh, Y. Wang, Stochastic cubic nonlinear Schrödinger equation with almost space-time white noise, arXiv:1805.08413 [math.AP].

  39. L. Gross, Abstract Wiener spaces, Proc. 5th Berkeley Sym. Math. Stat. Prob. 2 (1965), 31–42.

    Google Scholar 

  40. M. Gubinelli, P. Imkeller, N. Perkowski, Paracontrolled distributions and singular PDEs, Forum Math. Pi 3 (2015), e6, 75 pp.

    Google Scholar 

  41. M. Gubinelli, H. Koch, T. Oh, Renormalization of the two-dimensional stochastic nonlinear wave equations, Trans. Amer. Math. Soc. 370 (2018), no. 10, 7335–7359.

    Google Scholar 

  42. Z. Guo, T. Oh, Non-existence of solutions for the periodic cubic nonlinear Schrödinger equation below \(L^2\), Internat. Math. Res. Not. 2018, no. 6, 1656–1729.

    Google Scholar 

  43. Z. Guo, T. Oh, Y. Wang, Strichartz estimates for Schrödinger equations on irrational tori, Proc. Lond. Math. Soc. 109 (2014), no. 4, 975–1013.

    Google Scholar 

  44. M. Hairer, A theory of regularity structures, Invent. Math. 198 (2014), no. 2, 269–504.

    Google Scholar 

  45. M. Hairer, K. Matetski, Discretisations of rough stochastic PDEs, Ann. Probab. 46 (2018), no. 3, 1651–1709.

    Google Scholar 

  46. J.P. Kahane, Some Random Series of Functions, Second edition. Cambridge Studies in Advanced Mathematics, 5, Cambridge University Press, Cambridge, 1985. xiv+305 pp.

    Google Scholar 

  47. R. Killip, J. Murphy, M. Vişan, Almost sure scattering for the energy-critical NLS with radial data below \(H^1(\mathbb{R}^4)\), to appear in Comm. Partial Differential Equations.

    Google Scholar 

  48. N. Kishimoto, A remark on norm inflation for nonlinear Schrödinger equations, arXiv:1806.10066 [math.AP].

  49. H. Kuo, Gaussian measures in Banach spaces, Lecture Notes in Mathematics, Vol. 463. Springer-Verlag, Berlin-New York, 1975. vi+224 pp.

    Google Scholar 

  50. A. Kupiainen, Renormalization group and stochastic PDEs, Ann. Henri Poincaré 17 (2016), no. 3, 497–535.

    Article  MathSciNet  MATH  Google Scholar 

  51. H. Lindblad, C. Sogge, On existence and scattering with minimal regularity for semilinear wave equations, J. Funct. Anal. 130 (1995), 357–426.

    Article  MathSciNet  MATH  Google Scholar 

  52. J. Lührmann, D. Mendelson, Random data Cauchy theory for nonlinear wave equations of power-type on \(\mathbb{R}^3\), Comm. Partial Differential Equations 39 (2014), no. 12, 2262–2283.

    Google Scholar 

  53. J. Lührmann, D. Mendelson, On the almost sure global well-posedness of energy sub-critical nonlinear wave equations on \(\mathbb{R}^3\), New York J. Math. 22 (2016), 209–227.

    Google Scholar 

  54. H.P. McKean, Statistical mechanics of nonlinear wave equations. IV. Cubic Schrödinger, Comm. Math. Phys. 168 (1995), no. 3, 479–491. Erratum: Statistical mechanics of nonlinear wave equations. IV. Cubic Schrödinger, Comm. Math. Phys. 173 (1995), no. 3, 675.

    Google Scholar 

  55. Y. Meyer, Wavelets and operators, Translated from the 1990 French original by D. H. Salinger. Cambridge Studies in Advanced Mathematics, 37. Cambridge University Press, Cambridge, 1992. xvi+224 pp.

    Google Scholar 

  56. L. Molinet, On ill-posedness for the one-dimensional periodic cubic Schrödinger equation, Math. Res. Lett. 16 (2009), no. 1, 111–120.

    Article  MathSciNet  MATH  Google Scholar 

  57. A. Nahmod, N. Pavlović, G. Staffilani, Gigliola Almost sure existence of global weak solutions for supercritical Navier-Stokes equations, SIAM J. Math. Anal. 45 (2013), no. 6, 3431–3452.

    Article  MathSciNet  MATH  Google Scholar 

  58. A. Nahmod, G. Staffilani, Almost sure well-posedness for the periodic 3D quintic nonlinear Schrödinger equation below the energy space, J. Eur. Math. Soc. (JEMS) 17 (2015), no. 7, 1687–1759.

    Article  MathSciNet  MATH  Google Scholar 

  59. E. Nelson, A quartic interaction in two dimensions, 1966 Mathematical Theory of Elementary Particles (Proc. Conf., Dedham, Mass., 1965) pp. 69–73 M.I.T. Press, Cambridge, Mass.

    Google Scholar 

  60. T. Oh, Periodic stochastic Korteweg-de Vries equation with additive space-time white noise, Anal. PDE 2 (2009), no. 3, 281–304.

    Article  MathSciNet  MATH  Google Scholar 

  61. T.  Oh, Remarks on nonlinear smoothing under randomization for the periodic KdV and the cubic Szegö equation, Funkcial. Ekvac. 54 (2011), no. 3, 335–365.

    Article  MathSciNet  MATH  Google Scholar 

  62. T. Oh, A remark on norm inflation with general initial data for the cubic nonlinear Schrödinger equations in negative Sobolev spaces, Funkcial. Ekvac. 60 (2017) 259–277.

    Article  MathSciNet  MATH  Google Scholar 

  63. T. Oh, M. Okamoto, O. Pocovnicu, On the probabilistic well-posedness of the nonlinear Schrödinger equations with non-algebraic nonlinearities, arXiv:1708.01568 [math.AP].

  64. T. Oh, M. Okamoto, N. Tzvetkov, Uniqueness and non-uniqueness of the Gaussian free field evolution under the two-dimensional Wick ordered cubic wave equation, preprint.

    Google Scholar 

  65. T. Oh, O. Pocovnicu, Probabilistic global well-posedness of the energy-critical defocusing quintic nonlinear wave equation on \(\mathbb{R}^3\), J. Math. Pures Appl. 105 (2016), 342–366.

    Google Scholar 

  66. T. Oh, O. Pocovnicu, A remark on almost sure global well-posedness of the energy-critical defocusing nonlinear wave equations in the periodic setting, Tohoku Math. J. 69 (2017), no.3, 455–481.

    Google Scholar 

  67. T. Oh, O. Pocovnicu, N. Tzvetkov, Probabilistic local Cauchy theory of the cubic nonlinear wave equation in negative Sobolev spaces, preprint.

    Google Scholar 

  68. T. Oh, O. Pocovnicu, Y. Wang, On the stochastic nonlinear Schrödinger equations with non-smooth additive noise, to appear in Kyoto J. Math.

    Google Scholar 

  69. T. Oh, J. Quastel, On Cameron-Martin theorem and almost sure global existence, Proc. Edinb. Math. Soc. 59 (2016), 483–501.

    Article  MathSciNet  MATH  Google Scholar 

  70. T. Oh, L. Thomann, A pedestrian approach to the invariant Gibbs measures for the 2-d defocusing nonlinear Schrödinger equations, Stoch. Partial Differ. Equ. Anal. Comput. 6 (2018), 397–445.

    Google Scholar 

  71. T. Oh, L. Thomann, Invariant Gibbs measures for the 2-d defocusing nonlinear wave equations, to appear in Ann. Fac. Sci. Toulouse Math.

    Google Scholar 

  72. T. Oh, N. Tzvetkov, Quasi-invariant Gaussian measures for the cubic fourth order nonlinear Schrödinger equation, Probab. Theory Related Fields 169 (2017), 1121–1168.

    Article  MathSciNet  MATH  Google Scholar 

  73. T. Oh, N. Tzvetkov, On the transport of Gaussian measures under the flow of Hamiltonian PDEs, Sémin. Équ. Dériv. Partielles. 2015-2016, Exp. No. 6, 9 pp.

    Google Scholar 

  74. T. Oh, N. Tzvetkov, Quasi-invariant Gaussian measures for the two-dimensional defocusing cubic nonlinear wave equation, arXiv:1703.10718 [math.AP].

  75. T. Oh, N. Tzvetkov, Y. Wang, Solving the 4NLS with white noise initial data, preprint.

    Google Scholar 

  76. T. Oh, Y. Wang, On the ill-posedness of the cubic nonlinear Schrödinger equation on the circle, to appear in An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.).

    Google Scholar 

  77. T. Ozawa, Y. Tsutsumi, Space-time estimates for null gauge forms and nonlinear Schrödinger equations, Differential Integral Equations 11 (1998), no. 2, 201–222.

    Article  MathSciNet  MATH  Google Scholar 

  78. R.E.A.C. Paley, A. Zygmund, On some series of functions (1), (2), (3), Proc. Camb. Philos. Soc. 26 (1930), 337–357, 458–474; 28 (1932), 190–205.

    Google Scholar 

  79. O. Pocovnicu, Probabilistic global well-posedness of the energy-critical defocusing cubic nonlinear wave equations on \(\mathbb{R}^4\), J. Eur. Math. Soc. (JEMS) 19 (2017), 2321–2375.

    Google Scholar 

  80. O. Pocovnicu, Y. Wang, An \(L^p\)-theory for almost sure local well-posedness of the nonlinear Schrödinger equations, preprint.

    Google Scholar 

  81. A. Poiret, D. Robert, L. Thomann, Probabilistic global well-posedness for the supercritical nonlinear harmonic oscillator, Anal. PDE 7 (2014), no. 4, 997–1026.

    Article  MathSciNet  MATH  Google Scholar 

  82. G. Richards, Invariance of the Gibbs measure for the periodic quartic gKdV, Ann. Inst. H. Poincaré Anal. Non Linéaire 33 (2016), no. 3, 699–766.

    Article  MathSciNet  MATH  Google Scholar 

  83. B. Simon, The \(P(\varphi )_2\)Euclidean (quantum) field theory, Princeton Series in Physics. Princeton University Press, Princeton, N.J., 1974. xx+392 pp.

    Google Scholar 

  84. C. Sun, B. Xia, Probabilistic well-posedness for supercritical wave equations with periodic boundary condition on dimension three, Illinois J. Math. 60 (2016), no. 2, 481–503.

    Google Scholar 

  85. T. Tao, Nonlinear dispersive equations. Local and global analysis, CBMS Regional Conference Series in Mathematics, 106. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2006. xvi+373 pp.

    Google Scholar 

  86. L. Thomann, N. Tzvetkov, Gibbs measure for the periodic derivative nonlinear Schrödinger equation, Nonlinearity 23 (2010), no. 11, 2771–2791.

    Article  MathSciNet  MATH  Google Scholar 

  87. N. Tzvetkov, Quasiinvariant Gaussian measures for one-dimensional Hamiltonian partial differential equations, Forum Math. Sigma 3 (2015), e28, 35 pp.

    Google Scholar 

  88. N. Tzvetkov, Random data wave equations, arXiv:1704.01191 [math.AP].

  89. N. Wiener, Tauberian theorems, Ann. of Math. (2) 33 (1932), no. 1, 1–100.

    Google Scholar 

  90. B. Xia, Generic ill-posedness for wave equation of power type on 3D torus, arXiv:1507.07179 [math.AP].

  91. V. Yudovich, Non-stationary flows of an ideal incompressible fluid, Zh. Vychisl. Math. i Math. Fiz. (1963) 1032–1066 (in Russian).

    Google Scholar 

  92. T. Zhang, D. Fang, Random data Cauchy theory for the generalized incompressible Navier-Stokes equations, J. Math. Fluid Mech. 14 (2012), no. 2, 311–324.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Á. B. is partially supported by a grant from the Simons Foundation (No. 246024). T. O. was supported by the European Research Council (grant no. 637995 “ProbDynDispEq”). The authors would like to thank Justin Forlano for careful proofreading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Árpád Bényi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bényi, Á., Oh, T., Pocovnicu, O. (2019). On the Probabilistic Cauchy Theory for Nonlinear Dispersive PDEs. In: Boggiatto, P., et al. Landscapes of Time-Frequency Analysis. Applied and Numerical Harmonic Analysis. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-05210-2_1

Download citation

Publish with us

Policies and ethics