Skip to main content

Olfaction as a Target for Control of Honeybee Parasite Mite Varroa destructor

  • Chapter
  • First Online:
Olfactory Concepts of Insect Control - Alternative to insecticides

Abstract

The mite Varroa destructor Anderson & Trueman (Acari: Varroidae) is a major global threat to the European honeybee Apis mellifera. The mite is an obligatory ectoparasite. It feeds on the hemolymph of bees and also serves as an active vector for pathogenic viruses, which have become more abundant and virulent since the invasion of the mite. The Varroa life cycle is tightly linked to that of a honeybee. The cycle can be generally divided into two main phases: a reproductive phase, in which the female Varroa parasitizes bee pupae and reproduce within sealed brood cells, and a phoretic phase, in which it parasitizes adult bees. Between these phases Varroa mites can wander on comb surfaces. Hive volatiles, mainly from adult bees and brood, play a crucial role in the parasite’s life cycle, by guiding host finding, selection and regulating its reproduction suggesting that the mite’s olfaction may be an important target for new specific control agents. This concept was proven with some synthetic volatile compounds. Inhibition of host sensing leads to incorrect Varroa host selection or reduction in mite’s ability to reach a host. Although the mode of action of these compounds is not yet clear, this approach seems promising towards an integrated and sustainable control over this major apicultural pest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akhtar Y, Isman MB, Paduraru PM, Nagabandi S, Nair R, Plettner E (2007) Screening of dialkoxybenzenes and disubstituted cyclopentene derivatives against the cabbage looper, Trichoplusia ni, for the discovery of new feeding and oviposition deterrents. J Agric Food Chem 55:10323–10330

    Article  CAS  PubMed  Google Scholar 

  • Akhtar Y, Yu Y, Isman MB, Plettner E (2010) Dialkoxybenzene and dialkoxyallylbenzene feeding and oviposition deterrents against the cabbage looper, Trichoplusia ni: potential insect behavior control agents. J Agric Food Chem 58:4983–4991

    Article  CAS  PubMed  Google Scholar 

  • Alaux C, Le Conte Y, Adams HA, Rodriguez-Zas S, Grozinger CM, Sinha S, Robinson GE (2009) Regulation of brain gene expression in honey bees by brood pheromone. Genes Brain Behav 8:309–319

    Article  CAS  PubMed  Google Scholar 

  • Allan S (2010) Chemical ecology of tick-host interactions. In: Takken W, Knols B (eds) Ecology and control of vector-borne disease, Volume 2 Olfaction in vector-host interactions. Wageningen Academic Publishers, Wageningen, pp 327–348

    Google Scholar 

  • Axtell R, Foelix R, Coons L, Roshdy M (1971) Sensory receptors in ticks and mites. In: Proceedings of the 3rd International Congress Acarology held Prague (Czechoslovakia), August 31–September 6, pp 35–40

    Google Scholar 

  • Beaurepaire AL, Truong TA, Fajardo AC, Dinh TQ, Cervancia C, Moritz RFA (2015) Host specificity in the honeybee parasitic mite, Varroa spp. in Apis mellifera and Apis cerana. PLoS One 10:e0135103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bjostad L (2000) Electrophysiological methods. In: Millar J, Haynes K (eds) Methods in chemical ecology, chemical methods. Kluwer Academic Publishers, Boston/Dordrecht/London, pp 339–369

    Google Scholar 

  • Boot WJ (1994) Methyl palmitate does not elicit invasion of honeybee brood cells by Varroa mites. Exp Appl Acarol 18:587–592

    Article  CAS  Google Scholar 

  • Boot WJ, Calis JNM, Beetsma J (1993) Invasion of Varroa jacobsons into honey bee brood cells: a matter of chance or choice? J Apic Res 32:167–174

    Article  Google Scholar 

  • Breed MD, Guzmán-Novoa E, Hunt GJ (2004) Defensive behavior of honey bees: organization, genetics, and comparisons with other bees. Annu Rev Entomol 49:271–298

    Article  CAS  PubMed  Google Scholar 

  • Cabrera Cordon AR, Shirk PD, Duehl AJ, Teal PEA (2013) Variable induction of vitellogenin genes in the varroa mite, Varroa destructor (Anderson & Trueman), by the honeybee, Apis mellifera L, host and its environment. Insect Mol Biol 22:88–103

    Article  CAS  PubMed  Google Scholar 

  • Calderone NW, Lin S (2001) Behavioural responses of Varroa destructor (Acari: Varroidae) to extracts of larvae, cocoons and brood food of worker and drone honey bees, Apis mellifera (Hymenoptera: Apidae). Physiol Entomol 26:341–350

    Article  CAS  Google Scholar 

  • Carneiro FE, Torres RR, Strapazzon R, Ramírez SA, Guerra CV Jr, Kolling DF, Moretto G (2007) Changes in the reproductive ability of the mite Varroa destructor (Anderson e Trueman) in africanized honey bees (Apis mellifera L.) (Hymenoptera: Apidae) colonies in southern Brazil. Neotrop Entomol 36:949–952

    Article  PubMed  Google Scholar 

  • Castillo C, Chen H, Graves C, Maisonnasse A, Le Conte Y, Plettner E (2012) Biosynthesis of ethyl oleate, a primer pheromone, in the honey bee (Apis mellifera L.). Insect Biochem Mol Biol 42:404–416

    Article  CAS  PubMed  Google Scholar 

  • Cervo R, Bruschini C, Cappa F, Meconcelli S, Pieraccini G, Pradella D, Turillazi S (2014) High Varroa mite abundance influences chemical profiles of worker bees and mite-host preferences. J Exp Biol 217:2998–3001

    Article  CAS  PubMed  Google Scholar 

  • Chipman AD et al (2014) The first myriapod genome sequence reveals conservative arthropod gene content and genome organisation in the centipede Strigamia maritima. PLoS Biol 12:e1002005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corrêa-Marques MH, Medina LM, Martin SJ, De Jong D (2003) Comparing data on the reproduction of Varroa destructor. Genet Mol Res Genet Mol Res Genet Mol Res 2:1–6

    PubMed  Google Scholar 

  • Croset V, Rytz R, Cummins SF, Budd A, Brawand D, Kaessmann H, Gibson TJ, Benton R (2010) Ancient protostome origin of chemosensory ionotropic glutamate receptors and the evolution of insect taste and olfaction. PLoS Genet 6:e1001064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Currie RW, Gatien P (2006) Timing acaricide treatments to prevent Varroa destructor (Acari: Varroidae) from causing economic damage to honey bee colonies. Can Entomol 138:238–252

    Article  Google Scholar 

  • De Bruyne M, Guerin PM (1998) Contact chemostimuli in the mating behaviour of the cattle tick, Boophilus microplus. Arch Insect Biochem Physiol 39:65–80

    Article  PubMed  Google Scholar 

  • De Miranda J, Chen Y, Ribiere M, Gauthier L (2011) Varroa and viruses. In: Carreck N (ed) Varroa, still a problem in the 21st century? The International Bee Research Association, Cardiff, pp 11–32

    Google Scholar 

  • Del Piccolo F, Nazzi F, Della Vedova G, Milani N (2010) Selection of Apis mellifera workers by the parasitic mite Varroa destructor using host cuticular hydrocarbons. Parasitology 137:967–973

    Article  CAS  PubMed  Google Scholar 

  • Dillier F, Fluri P, Guerin PM (2001) Die Varroamilbe riecht mit den Beinen. Schweiz Bienen-Ztg 124:28–31

    Google Scholar 

  • Dillier F, Fluri P, Imdorf A (2006) Review of the orientation behaviour in the bee parasitic mite Varroa destructor: sensory equipment and cell invasion behavior. Rev Suisse Zool 113:857–877

    Article  Google Scholar 

  • Dong X, Kashio M, Peng G et al (2016) Isoform-specific modulation of the chemical sensitivity of conserved TRPA1 channel in the major honeybee ectoparasitic mite, Tropilaelaps mercedesae. Open Biol 6:387–417

    Article  CAS  Google Scholar 

  • Donzé G, Herrmann M, Bachofen B, Guerin PM (1994) Effect of mating frequency and brood cell infestation rate on the reproductive success of the honeybee parasite Varroa jacobsoni. Ecol Entomol 21:17–26

    Article  Google Scholar 

  • Donzé G, Schnyder-Candrian S, Bogdanov S, Gurein P, Kilchenman V, Diehl P Monachon F (1998) Aliphatic alcohols and aldehydes of the honey bee cocoon induce arrestment behavior in Varroa destructor (Acari: Mesostigmata), an Ectoparasite of Apis mellifera. Arch Insect Biochem Physiol 37:129–145

    Article  Google Scholar 

  • Eliash N, Singh NK, Kamer Y, Pinenelli GR, Plettner P (2014) Can we disrupt the sensing of honey bees by the bee parasite Varroa destructor? PLoS One 9:e106889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eliash N, Singh NK, Thangarajan S, Soroker V (2017) Chemosensing of honeybee parasite, Varroa destructor: transcriptomic analysis. Sci Rep 7:13091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eliash N, Thangarajan S, Sela N, Goldenberg I, Zaidman I, Kamer Y, Rafaeli A, Soroker V (2019) Varroa chemosensory proteins: some are conserved across Arthropoda but others are arachnid specific. Insect Mol Biol. (in press) DOI: 10.1111/imb.12553

    Google Scholar 

  • Endris J, Baker R (1993) Action potentials recorded from the foreleg of Varroa jacobsoni after olfactory stimulation. Apidologie 24:488–489

    Google Scholar 

  • Frey E, Odemer R, Blum T, Rosenkranz P (2013) Activation and interruption of the reproduction of Varroa destructor is triggered by host signals (Apis mellifera). J Invertebr Pathol 113:56–62

    Article  CAS  PubMed  Google Scholar 

  • Genersch E (2010) Honey bee pathology: current threats to honey bees and beekeeping. Appl Microbiol Biotechnol 87:87–97

    Article  CAS  PubMed  Google Scholar 

  • Gomez-Diaz C, Bargeton B, Abuin L, Bukar N, Reina JH, Bartoi T, Graf M, Ong H, Ulbrich MH, Masson JF, Benton R (2016) A CD36 ectodomain mediates insect pheromone detection via a putative tunnelling mechanism. Nat Commun 7:11866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goodwin RM, Taylor MA, Mcbrydie HM, Cox HM (2006) Drift of Varroa destructor-infested worker honey bees to neighbouring colonies. J Apic Res 45:155–156

    Article  Google Scholar 

  • Gulia-Nuss M et al (2016) Genomic insights into the Ixodes scapularis tick vector of Lyme disease. Nat Commun 7:10507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guzmán-Novoa E, Eccles L, Calvete Y, McGowan J, Kelly PG, Correa-Benítez A (2010) Varroa destructor is the main culprit for the death and reduced populations of overwintered honey bee (Apis mellifera) colonies in Ontario. Can Apidologie 41:443–450

    Article  Google Scholar 

  • Häußermann CK, Ziegelmann B, Bergmann P, Rosenkranz P (2015) Male mites (Varroa destructor) perceive the female sex pheromone with the sensory pit organ on the front leg tarsi. Apidologie 46:771–778

    Article  CAS  Google Scholar 

  • Hebets EA, Chapman RF (2000) Electrophysiological studies of olfaction in the whip spider Phrynus parvulus (Arachnida, Amblypygi). J Insect Physiol 46:1441–1448

    Article  CAS  PubMed  Google Scholar 

  • Hoppe H, Ritter W (1988) The influence of the nasanov gland pheromone on the recognition of house bees and foragers by Varroa jacobsoni. Apidologie 19:165–172

    Article  Google Scholar 

  • Hoy MA, Waterhouse RM, Wu K, Estep AS, Ioannidis P, Palmer WJ, Pomerantz AF, Simão FA, Thomas J, Jiggins FM, Murphy TD, Pritham EJ, Robertson HM, Zdobnov M, Gibbs RA, Richards S (2016) Genome sequencing of the phytoseiid predatory mite Metaseiulus occidentalis reveals completely atomised Hox genes and super-dynamic intron evolution. Genome Biol Evol 8:1762–1775

    Article  PubMed  PubMed Central  Google Scholar 

  • Iovinella I, Ban L, Song L, Pelosi P, Dani FR (2016) Proteomic analysis of castor bean tick Ixodes ricinus: a focus on chemosensory organs. Insect Biochem Mol Biol 78:58–68

    Article  CAS  PubMed  Google Scholar 

  • Iovinella I, McAfee A, Mastrobuoni G, Kempa S, Foster LJ, Pelosi P, Dani FR (2018) Proteomic analysis of chemosensory organs in the honey bee parasite Varroa destructor: a comprehensive examination of the potential carriers for semiochemicals. J Proteome 181:131–141

    Article  CAS  Google Scholar 

  • Ishida Y, Tsuchiya W, Fujii T, Fujimoto Z, Miyazawa M, Ishibashi J, Matsuyama S, Ishikawa Y, Yamazaki T (2014) Niemann-Pick type C2 protein mediating chemical communication in the worker ant. Proc Natl Acad Sci U S A 111:3847–3852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keeling CI, Slessor KN, Higo HA, Winston ML (2003) New components of the honey bee (Apis mellifera L.) queen retinue pheromone. Proc Natl Acad Sci U S A 100:4486–4491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kraus B (1990) Effects of honey-bee alarm pheromone compounds on the behaviour of Varroa jacobsoni. Apidologie 21:127–134

    Article  CAS  Google Scholar 

  • Kraus B (1994) Factors influencing host choice of the honey bee parasite Varroa jacobsoni Oud. Exp Appl Acarol 18:435–443

    Article  Google Scholar 

  • Le Conte Y, Arnold G, Trouiller J, Masson C (1989) Attraction of the parasitic mite Varroa to the drone larvae of honey bees by simple aliphatic esters. Science 245:638–639

    Article  PubMed  Google Scholar 

  • Le Conte Y, Trouiller J, Masson C, Chappe B (1990) Identification of a brood pheromone in honeybees. Naturwissenschaften 77:334–336

    Article  Google Scholar 

  • Leal WS (2013) Odorant reception in insects: roles of receptors, binding proteins, and degrading enzymes. Annu Rev Entomol 58:373–391

    Article  CAS  PubMed  Google Scholar 

  • Leoncini I, Le Conte Y, Costagliola G, Plettner E, Toth AL, Wang M, Huang Z, Bécard JM, Crauser D, Slessor KN, Robinson GE (2004) Regulation of behavioral maturation by a primer pheromone produced by adult worker honey bees. Proc Natl Acad Sci U S A 101:17559–17564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu T, Peng YS (1990) Palpal tarsal sensilla of the female mite, Varroa jacobsoni Oud. Can Entomol 122:295–300

    Article  Google Scholar 

  • Locke B (2015) Inheritance of reduced Varroa mite reproductive success in reciprocal crosses of mite-resistant and mite-susceptible honey bees (Apis mellifera). Apidologie 47:583–588

    Article  Google Scholar 

  • Martin SJ (1994) Ontogenesis of the mite Varroa jacobsoni Oud. in worker brood of the honeybee Apis mellifera L. under natural conditions. Exp Appl Acarol 18:87–100

    Article  Google Scholar 

  • Martin S, Holland K, Murray M (1997) Non-reproduction in the honeybee mite Varroa jacobsoni. Exp Appl Acarol 21:539–549

    Article  Google Scholar 

  • Milani N, Nannelli R (1988) The tarsal sense organ in Varroa jacobsoni Oud.: SEM observations. In: Proceedings of the a meeting of the EC-Experts’ Group, Udine, Italy. pp 71–82

    Google Scholar 

  • Milani N, Della Vedova G, Nazzi F (2004) (Z)-8-Heptadecene reduces the reproduction of in brood cells. Apidologie 35:265–273

    Article  CAS  Google Scholar 

  • Missbach C, Dweck H, Vogel H, Vilcinskas A, Stensmyr MC, Hansson BS, Grosse-Wilde E (2014) Evolution of insect olfactory receptors. Elife 3:e02115

    Article  PubMed  PubMed Central  Google Scholar 

  • Nazzi F, Milani N (1996) The presence of inhibitors of the reproduction of Varroa jacobsoni Oud. (Gamasida: Varroidae) in infested cells. Exp Appl Acarol 20:617–623

    Article  Google Scholar 

  • Nazzi F, Le Conte Y (2016) Ecology of Varroa destructor, the major ectoparasite of the Western honey bee, Apis mellifera. Annu Rev Entomol 61:417–432

    Article  CAS  PubMed  Google Scholar 

  • Nazzi F, Milani N, Della Vedova G (2002) (Z)-8-Heptadecene from infested cells reduces the reproduction of Varroa destructor under laboratory conditions. J Chem Ecol 28:2181–2190

    Article  CAS  PubMed  Google Scholar 

  • Nazzi F, Milani N, Della Vedova G (2004) A semiochemical from larval food influences the entrance of Varroa destructor into brood cells. Apidologie 35:403–410

    Article  CAS  Google Scholar 

  • Nazzi F, Bortolomeazzi R, Della Vedova G, Del Piccolo F, Annoscia D, Milani N (2009) Octanoic acid confers to royal jelly varroa-repellent properties. Naturwissenschaften 96:309–314

    Article  CAS  PubMed  Google Scholar 

  • Ngoc PCT, Greenhalgh R, Dermauw W, Rombauts S, Bajda S, Zhurov V, Grbić M, Van de Peer Y, Van Leeuwen T, Rouzé P, Clark RM (2016) Complex evolutionary dynamics of massively expanded chemosensory receptor families in an extreme generalist Chelicerate herbivore. Genome Biol Evol 8:3323–3339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papachristoforou A, Kagiava A, Papaefthimiou C, Termentzi A, Fokialakis N, Skaltsounis AL, Watkins M, Arnold G, Theophilidis G (2012) The bite of the honeybee: 2-Heptanone secreted from honeybee mandibles during a bite acts as a local anaesthetic in insects and mammals. PLoS One 7:e47432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pelosi P, Iovinella I, Felicioli A, Dani FR (2014) Soluble proteins of chemical communication: an overview across arthropods. Front Physiol 5:320

    Article  PubMed  PubMed Central  Google Scholar 

  • Peñalva-Arana DC, Lynch M, Robertson HM (2009) The chemoreceptor genes of the waterflea Daphnia pulex: many Grs but no Ors. BMC Evol Biol 9:79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng G, Kashio M, Morimoto T, Li T, Zhu J, Tominaga M, Kadowaki T (2015) Plant-derived tick repellents activate the honey bee ectoparasitic mite TRPA1. Cell Rep 12:190–202

    Article  CAS  PubMed  Google Scholar 

  • Pernal SF, Baird DS, Birmingham AL, Higo HA, Slessor KN, Winston ML (2005) Semiochemicals influencing the host-finding behaviour of Varroa destructor. Exp Appl Acarol 37:1–26

    Article  CAS  PubMed  Google Scholar 

  • Pickett JA, Williams IH, Martin AP, Smith MC (1980) Nasonov pheromone of the honey bee, Apis mellifera L. (Hymenoptera: Apidae). J Chem Ecol 6(2):425–434

    Article  CAS  Google Scholar 

  • Pinnelli GR, Singh NK, Soroker V, Plettner E (2016) Synthesis of enantiopure alicyclic ethers and their activity on the chemosensory organ of the ectoparasite of honey bees, Varroa destructor. J Agric Food Chem 64:8653–8658

    Article  CAS  PubMed  Google Scholar 

  • Plettner E, Gries R (2010) Agonists and antagonists of antennal responses of gypsy moth (Lymantria dispar) to the pheromone (+)-disparlure and other odorants. J Agric Food Chem 58:3708–3719

    Article  CAS  PubMed  Google Scholar 

  • Plettner E, Eliash N, Singh NK, Pinnelli GR, Soroker V (2017) The chemical ecology of host-parasite interaction as a target of Varroa destructor control agents. Apidologie 48:78–92

    Article  CAS  Google Scholar 

  • Rehm SM, Ritter W (1989) Sequence of the sexes in the offspring of Varroa jacobsoni and the resulting consequences for the calculation of the developmental period. Apidologie 20:339–343

    Article  Google Scholar 

  • Renthal R, Manghnani L, Bernal S, Qu Y, Griffith WP, Lohmeyer K, Guerrero FD, Borges LMF, Pérez de León A (2017) The chemosensory appendage proteome of Amblyomma americanum (Acari: Ixodidae) reveals putative odorant-binding and other chemoreception-related proteins. Insect Sci 24:730–742

    Article  CAS  PubMed  Google Scholar 

  • Rickli M (1992) Palmitic acid released from honeybee worker larvae attracts the parasitic mite Varroa jacobsoni on servosphere. Naturwissenschaften 79:320–322

    Article  CAS  Google Scholar 

  • Rickli M, Diehl PA, Guerin PM (1994) Cuticle alkanes of honeybee larvae mediate arrestment of bee parasite Varroa jacobsoni. J Chem Ecol 20:2437–2453

    Article  CAS  PubMed  Google Scholar 

  • Rosenkranz P, Garrido C (2004) Volatiles of the honey bee larva initiate oogenesis in the parasitic mite Varroa destructor. Chemoecology 14:193–197

    Article  Google Scholar 

  • Rosenkranz P, Aumeier P, Ziegelmann B (2010) Biology and control of Varroa destructor. J Invertebr Pathol 103:S96–S119

    Article  PubMed  Google Scholar 

  • Sammataro D, Avitabile A (2011) The beekeeper’s handbook, 4th edn. Cornell University Press, Ithaca

    Google Scholar 

  • Sammataro D, Gerson U, Needham G (2000) Parasitic mites of honey bees: life history, implications, and impact. Annu Rev Entomol 45:519–548

    Article  CAS  PubMed  Google Scholar 

  • Singh NK, Eliash N, Kamer Y, Zaidman I, Plettner E, Soroker V (2014) The effect of DEET on chemosensing of the honey bee and its parasite Varroa destructor. Apidologie 46:380–391

    Article  Google Scholar 

  • Singh NK, Eliash N, Pinnelli GR, Plettner E, Soroker V (2015) Specific disruption of Varroa chemosensing. Congr Int Actual Apícola, Poebla, Mexico. pp 73–77

    Google Scholar 

  • Singh NK, Eliash N, Stein I, Kamer Y, Zaidman I, Rafaeli A, Soroker V (2016) Identification and gene-silencing of a putative odorant receptor transcription factor in Varroa destructor: possible role in olfaction. Insect Mol Biol 25:181–190

    Article  CAS  PubMed  Google Scholar 

  • Slessor KN, Winston ML, Le Conte Y (2005) Pheromone communication in the honeybee (Apis mellifera L.). J Chem Ecol 31:2731–2745

    Article  CAS  PubMed  Google Scholar 

  • Tichy H, Barth F (1992) Fine structure of olfactory sensilla in myriapods and arachnids. Microsc Res Tech 391:372–391

    Article  Google Scholar 

  • Trouiller J, Milani N (1999) Stimulation of Varroa jacobsoni Oud. oviposition with semiochemicals from honeybee brood. Apidologie 30:3–12

    Article  Google Scholar 

  • Trouiller J, Arnold G, Chappe B, Le Conte Y, Masson C (1992) Semiochemical basis of infestation of honey bee brood by Varroa jacobsoni. J Chem Ecol 18:2041–2053

    Article  CAS  PubMed  Google Scholar 

  • Vieira FG, Rozas J (2011) Comparative genomics of the odorant-binding and chemosensory protein gene families across the Arthropoda: origin and evolutionary history of the chemosensory system. Genome Biol Evol 3:476–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vizueta J, Frías-López C, Macías-Hernández N, Arnedo MA, Sánchez-Gracia A, Rozas J (2017) Evolution of chemosensory gene families in arthropods: insight from the first inclusive comparative transcriptome analysis across spider appendages. Genome Biol Evol 9:178–196

    CAS  PubMed  Google Scholar 

  • Vogt RG, Miller NE, Litvack R, Fandino RA, Sparks J, Staples J, Friedman R, Dickens JC (2009) The insect SNMP gene family. Insect Biochem Mol Biol 39:448–456

    Article  CAS  PubMed  Google Scholar 

  • Watson K, Stallins JA (2016) Honey bees and colony collapse disorder: a pluralistic reframing. Geogr Compass 10:222–236

    Article  Google Scholar 

  • Xie X, Huang ZY, Zeng Z (2016) Why do Varroa mites prefer nurse bees? Sci Rep 6:28228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xuan N, Guo X, Xie HY, Lou QN, Lu XB, Liu GX, Picimbon JF (2015) Increased expression of CSP and CYP genes in adult silkworm females exposed to avermectins. Insect Sci 22:203–219

    Article  CAS  PubMed  Google Scholar 

  • Yoder J, Sammataro D (2003) Potential to control Varroa mites (Acari: Varroidae) using chemical ecology. Int J Acarol 29:139–143

    Article  Google Scholar 

  • Ziegelmann B, Tolasch T, Steidle JLM, Rosenkranz P (2013) The mating behavior of Varroa destructor is triggered by a female sex pheromone. Part 2: identification and dose-dependent effects of components of the Varroa sex pheromone. Apidologie 44:481–490

    Article  CAS  Google Scholar 

  • Zioni N, Soroker V, Chejanovsky N (2011) Replication of Varroa destructor virus 1 (VDV-1) and a Varroa destructor virus 1-deformed wing virus recombinant (VDV-1-DWV) in the head of the honey bee. Virology 417:106–112

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge funding from the Natural Sciences and Engineering Research Council (NSERC) of Canada (Discovery grants # 477793-2015, 222923-2010 and Strategic Project grant # 396484-10 to EP) and from Chief Scientist of the Israeli Ministry of Agriculture grant #131-1815 and Israel Science Foundation Grant (No. 1652/14) to VS, and to Dan Eliash for the drawing of Fig. 6.1 and the illustration for Box 6.1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victoria Soroker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Soroker, V., Singh, N.K., Eliash, N., Plettner, E. (2019). Olfaction as a Target for Control of Honeybee Parasite Mite Varroa destructor . In: Picimbon, JF. (eds) Olfactory Concepts of Insect Control - Alternative to insecticides. Springer, Cham. https://doi.org/10.1007/978-3-030-05060-3_6

Download citation

Publish with us

Policies and ethics