Skip to main content

Abstract

This paper discusses applications of spherical nanoindentation stress-strain curves in characterizing the local mechanical behavior of materials with modified surfaces. Using ion-irradiated tungsten as a specific example, this paper demonstrates that a simple variation of the indenter size (radius) can identify the depth of the radiation-induced-damage zone, as well as quantify the behavior of the damaged zone itself. Using corresponding local structure information from electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM) we look at (a) the elastic response, elasto-plastic transition, and onset of plasticity in ion-irradiated tungsten, zirconium and 304 stainless steel under indentation, and compare their relative mechanical behavior to the unirradiated state, (b) correlating these changes to the different grain orientations as a function of (c) irradiation from different sources (such as He, W, and He+W for tungsten samples).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.T. Busby, M.C. Hash, G.S. Was, The relationship between hardness and yield stress in irradiated austenitic and ferritic steels. J. Nucl. Mater. 336(2–3), 267–278 (2005)

    Article  CAS  Google Scholar 

  2. P. Hosemann, J.G. Swadener, D. Kiener, G.S. Was, S.A. Maloy, N. Li, An exploratory study to determine applicability of nano-hardness and micro-compression measurements for yield stress estimation. J. Nucl. Mater. 375(1), 135–143 (2008)

    Article  CAS  Google Scholar 

  3. D. Kiener, P. Hosemann, S.A. Maloy, A.M. Minor, In situ nanocompression testing of irradiated copper. Nat. Mater. 10(8), 608–613 (2011)

    Article  CAS  Google Scholar 

  4. N. Li, N.A. Mara, Y.Q. Wang, M. Nastasi, A. Misra, Compressive flow behavior of Cu thin films and Cu/Nb multilayers containing nanometer-scale helium bubbles. Scr. Mater. 64(10), 974–977 (2011)

    Article  CAS  Google Scholar 

  5. A.C. Fischer-Cripps, Nanoindentation, 2nd edn. (Springer, 2004)

    Google Scholar 

  6. P. Hosemann, D. Kiener, Y. Wang, S.A. Maloy, Issues to consider using nano indentation on shallow ion beam irradiated materials. J. Nucl. Mater. 425(1–3), 136–139 (2012)

    Article  CAS  Google Scholar 

  7. P. Hosemann, C. Vieh, R.R. Greco, S. Kabra, J.A. Valdez, M.J. Cappiello, S.A. Maloy, Nanoindentation on ion irradiated steels. J. Nucl. Mater. 389(2), 239–247 (2009)

    Article  CAS  Google Scholar 

  8. S.R. Kalidindi, S. Pathak, Determination of the effective zero-point and the extraction of spherical nanoindentation stress–strain curves. Acta Mater. 56(14), 3523–3532 (2008)

    Article  CAS  Google Scholar 

  9. S. Pathak, J. Shaffer, S.R. Kalidindi, Determination of an effective zero-point and extraction of indentation stress-strain curves without the continuous stiffness measurement signal. Scr. Mater. 60(6), 439–442 (2009)

    Article  CAS  Google Scholar 

  10. S. Pathak, S.R. Kalidindi, Spherical nanoindentation stress–strain curves. Mater. Sci. Eng. R: Rep. 91, 1–36 (2015)

    Article  Google Scholar 

  11. S.J. Vachhani, R.D. Doherty, S.R. Kalidindi, Effect of the continuous stiffness measurement on the mechanical properties extracted using spherical nanoindentation. Acta Mater. 61(10), 3744–3751 (2013)

    Article  CAS  Google Scholar 

  12. D. Raabe, N. Zaafarani, R.N. Singh, F. Roters, S. Zaefferer, Three-dimensional investigation of the texture and microstructure below a nanoindent in a Cu single crystal using 3D EBSD and crystal plasticity finite element simulations. Acta Mater. 54(7), 1863–1876 (2006)

    Article  CAS  Google Scholar 

  13. M. Rester, C. Motz, R. Pippan, The deformation-induced zone below large and shallow nanoindentations: a comparative study using EBSD and TEM. Philos. Mag. Lett. 88(12), 879–887 (2008)

    Article  CAS  Google Scholar 

  14. S. Pathak, D. Stojakovic, S.R. Kalidindi, Measurement of the local mechanical properties in polycrystalline samples using spherical nano-indentation and orientation imaging microscopy. Acta Mater. 57(10), 3020–3028 (2009)

    Article  CAS  Google Scholar 

  15. S.J. Vachhani, S.R. Kalidindi, Grain-scale measurement of slip resistances in aluminum polycrystals using spherical nanoindentation. Acta Mater. 90, 27–36 (2015)

    Article  CAS  Google Scholar 

  16. J.S. Weaver, M.W. Priddy, D.L. McDowell, S.R. Kalidindi, On capturing the grain-scale elastic and plastic anisotropy of alpha-Ti with spherical nanoindentation and electron back-scattered diffraction. Acta Mater. 117, 23–34 (2016)

    Article  CAS  Google Scholar 

  17. S. Pathak, J. Michler, K. Wasmer, S.R. Kalidindi, Studying grain boundary regions in polycrystalline materials using spherical nano-indentation and orientation imaging microscopy. J. Mater. Sci. 47(2), 815–823 (2012)

    Article  CAS  Google Scholar 

  18. G. Petzow, Metallographic Etching: Techniques for Metallotraphy, Ceramography, Plastography, 2nd edn. ASM International (1999)

    Google Scholar 

  19. ASM Handbook: Volume 9: Metallography And Microstructures. ASM International. ISBN: 978-0-87170-706-2 (2004)

    Google Scholar 

  20. J. Ziegler, J. Biersack, The stopping and range of ions in matter, in: Treatise on Heavy-Ion Science, ed. by D.A. Bromley (Springer, USA, 1985), pp. 93–129

    Chapter  Google Scholar 

  21. J.F. Ziegler, J.P. Biersack, SRIM Program (IBM Corp., Yorktown, NY, 2008)

    Google Scholar 

  22. M.L. Jenkins, M.A. Kirk, Characterisation of Radiation Damage by Transmission Electron Microscopy. CRC Press (2000)

    Google Scholar 

  23. S. Basu, A. Moseson, M.W. Barsoum, On the determination of spherical nanoindentation stress–strain curves. J. Mater. Res. 21(10), 2628–2637 (2006)

    Article  CAS  Google Scholar 

  24. J.S. Field, M.V. Swain, Determining the mechanical properties of small volumes of material from submicrometer spherical indentations. J. Mater. Res. 10(1), 101–112 (1995)

    Article  CAS  Google Scholar 

  25. J.L. Bucaille, S. Stauss, E. Felder, J. Michler, Determination of plastic properties of metals by instrumented indentation using different sharp indenters. Acta Mater. 51(6), 1663–1678 (2003)

    Article  CAS  Google Scholar 

  26. A.E. Giannakopoulos, S. Suresh, Determination of elastoplastic properties by instrumented sharp indentation. Scr. Mater. 40(10), 1191–1198 (1999)

    Article  CAS  Google Scholar 

  27. H. Hertz, Miscellaneous Papers (MacMillan and Co., Ltd., New York, 1896)

    Google Scholar 

  28. K.L. Johnson, Contact Mechanics (Cambridge University Press, Cambridge, 1987)

    Google Scholar 

  29. I.N. Sneddon, The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 3, 47–56 (1965)

    Article  Google Scholar 

  30. J.S. Weaver, A. Khosravani, A. Castillo, S.R. Kalidindi, High throughput exploration of process-property linkages in Al-6061 using instrumented spherical microindentation and microstructurally graded samples. Integrating Mater. Manufact. Innov. 5(1), 1–20 (2016)

    Article  Google Scholar 

  31. M.W. Barsoum, M. Radovic, T. Zhen, P. Finkel, S.R. Kalidindi, Dynamic elastic hysteretic solids and dislocations, Phys. Rev. Lett. 94(8), 085501-1 (2005)

    Google Scholar 

  32. H. Bei, Y.F. Gao, S. Shim, E.P. George, G.M. Pharr, Strength differences arising from homogeneous versus heterogeneous dislocation nucleation. Phys. Rev. B. 77(6) (2008)

    Google Scholar 

  33. J.R. Morris, H. Bei, G.M. Pharr, E.P. George, Size effects and stochastic behavior of nanoindentation pop in. Phys. Rev. Lett. 106(16) (2011)

    Google Scholar 

  34. S. Shim, H. Bei, E.P. George, G.M. Pharr, A different type of indentation size effect. Scr. Mater. 59(10), 1095–1098 (2008)

    Article  CAS  Google Scholar 

  35. C.A. Schuh, Nanoindentation studies of materials. Mater. Today 9(5), 32–40 (2006)

    Article  CAS  Google Scholar 

  36. B.R. Donohue, A. Ambrus, S.R. Kalidindi, Critical evaluation of the indentation data analyses methods for the extraction of isotropic uniaxial mechanical properties using finite element models. Acta Mater. 60(9), 3943–3952 (2012)

    Article  CAS  Google Scholar 

  37. J.J. Vlassak, W.D. Nix, Indentation modulus of elastically anisotropic half spaces. Philos. Mag. A (Physics of Condensed Matter, Defects and Mechanical Properties) 67(5), 1045–1056 (1993)

    Article  Google Scholar 

  38. J.J. Vlassak, W.D. Nix, Measuring the elastic properties of anisotropic materials by means of indentation experiments. J. Mech. Phys. Solids 42(8), 1223–1245 (1994)

    Article  Google Scholar 

  39. S.A. Syed Asif, J.B. Pethica, Nanoindentation creep of single-crystal tungsten and gallium arsenide. Philos. Mag. A. (Physics of Condensed Matter: Structure, Defects and Mechanical Properties) 76(6), 1105–1118 (1997)

    Article  Google Scholar 

  40. Y. Gao, H. Bei, Strength statistics of single crystals and metallic glasses under small stressed volumes. Prog. Mater Sci. 82, 118–150 (2016)

    Article  CAS  Google Scholar 

  41. Z. Wang, H. Bei, E.P. George, G.M. Pharr, Influences of surface preparation on nanoindentation pop-in in single-crystal Mo. Scr. Mater. 65(6), 469–472 (2011)

    Article  CAS  Google Scholar 

  42. S. Pathak, D. Stojakovic, R. Doherty, S.R. Kalidindi, Importance of surface preparation on the nano-indentation stress-strain curves measured in metals. J. Mater. Res. Focus Issue Indentation Methods Adv. Mater Res. 24(3), 1142–1155 (2009)

    CAS  Google Scholar 

  43. S. Pathak, J.L. Riesterer, S.R. Kalidindi, J. Michler, Understanding pop-ins in spherical nanoindentation. Appl. Phys. Lett. 105(16), 161913 (2014)

    Article  CAS  Google Scholar 

  44. S. Shim, H. Bei, M.K. Miller, G.M. Pharr, E.P. George, Effects of focused ion beam milling on the compressive behavior of directionally solidified micropillars and the nanoindentation response of an electropolished surface. Acta Mater. 57(2), 503–510 (2009)

    Article  CAS  Google Scholar 

  45. T.A. Michalske, J.E. Houston, Dislocation nucleation at nano-scale mechanical contacts. Acta Mater. 46(2), 391–396 (1998)

    Article  CAS  Google Scholar 

  46. S. Suresh, T.G. Nieh, B.W. Choi, Nano-indentation of copper thin films on silicon substrates. Scr. Mater. 41(9), 951–957 (1999)

    Article  CAS  Google Scholar 

  47. M. Victoria, N. Baluc, C. Bailat, Y. Dai, M.I. Luppo, R. Schaublin, B.N. Singh, The microstructure and associated tensile properties of irradiated fcc and bcc metals. J. Nucl. Mater. 276, 114–122 (2000)

    Article  CAS  Google Scholar 

  48. M. Miyamoto, D. Nishijima, M.J. Baldwin, R.P. Doerner, Y. Ueda, K. Yasunaga, N. Yoshida, K. Ono, Microscopic damage of tungsten exposed to deuterium-helium mixture plasma in PISCES and its impacts on retention property. J. Nucl. Mater. 415(1), S657–S660 (2011)

    Article  CAS  Google Scholar 

  49. D.K. Patel, H.F. Al-Harbi, S.R. Kalidindi, Extracting single-crystal elastic constants from polycrystalline samples using spherical nanoindentation and orientation measurements. Acta Mater. 79, 108–116 (2014)

    Article  CAS  Google Scholar 

  50. T. Diaz de la Rubia, H.M. Zbib, T.A. Khraishi, B.D. Wirth, M. Victoria, M.J. Caturla, Multiscale modelling of plastic flow localization in irradiated materials. Nature 406(6798), 871–874 (2000)

    Article  Google Scholar 

  51. N.A. Mara, D. Bhattacharyya, J.P. Hirth, P. Dickerson, A. Misra, Mechanism for shear banding in nanolayered composites. Appl. Phys. Lett. 97(2), 021909 (2010)

    Article  CAS  Google Scholar 

  52. A. Patra, D.L. McDowell, Crystal plasticity-based constitutive modelling of irradiated bcc structures. Philos. Mag. 92(7), 861–887 (2012)

    Article  CAS  Google Scholar 

  53. J.S. Weaver, C. Sun, Y. Wang, S.R. Kalidindi, N.A. Mara, S. Pathak, Comparing irradiation induced damage in He, W and He+W ion irradiated tungsten using spherical nanoindentation (2017 submitted)

    Google Scholar 

  54. S. Pathak, J.S. Weaver, S.R. Kalidindi, Y. Wang, R. Doerner, N. Mara, Probing nanoscale damage gradients with spherical nanoindentation. Scientific Reports. 7, 11918 (2017). doi:https://doi.org/10.1038/s41598-017-12071-6

  55. S. Pathak, S.J. Vachhani, K.J. Jepsen, H.M. Goldman, S.R. Kalidindi, Assessment of lamellar level properties in mouse bone utilizing a novel spherical nanoindentation data analysis method. J. Mech. Behav. Biomed. Mater (2012). doi:https://doi.org/10.1016/j.jmbbm.2012.03.018

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding from Department of Energy, Nuclear Engineering Enabling Technologies (DOE-NEET)—Reactor Materials program # DE-FOA-0000799, and University of California Office of the President (UCOP) under Award Number 12—LR237801 for this work. This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science. Los Alamos National Laboratory, an affirmative action equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. SP gratefully acknowledges funding from the Los Alamos National Laboratory Director’s Postdoctoral Fellowship and University of Nevada, Reno start-up faculty funds for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siddhartha Pathak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Minerals, Metals & Materials Society

About this paper

Cite this paper

Pathak, S., Weaver, J.S., Sun, C., Wang, Y., Kalidindi, S.R., Mara, N.A. (2019). Spherical Nanoindentation Stress-Strain Analysis of Ion-Irradiated Tungsten. In: Jackson, J., Paraventi, D., Wright, M. (eds) Proceedings of the 18th International Conference on Environmental Degradation of Materials in Nuclear Power Systems – Water Reactors. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-04639-2_40

Download citation

Publish with us

Policies and ethics