Skip to main content

A Neuronal Morphology Classification Approach Based on Deep Residual Neural Networks

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11304))

Included in the following conference series:

Abstract

The neuron classification problem is significant for understanding structure-function relationships in computational neuroscience. Advances in recent years have accelerated the speed of data collection, resulting in a large amount of data on the geometric, morphological, physiological, and molecular characteristics of neurons. These data encourage researchers to strive for automated neuron classification through powerful machine learning techniques. This paper extracts a statistical dataset of 43 geometrical features obtained from 116 human neurons, and proposes a neuronal morphology classification approach based on deep residual neural networks with feature scaling. The approach is applied to classify 18 types of human neurons and compares the accuracy of different number of residual block. Then, we also compare the accuracy between the proposed approach and other mainstream machine learning approaches, the classification accuracy of our approach is 100% in the training set and the testing set accuracy is 76.96%. The experimental results show that the deep residual neural network model has better classification accuracy for human neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Buckmaster, P.S., Alonso, A., Canfiled, D.R., et al.: Dendritic morphology, local circuitry, and intrinsic electrophysiology of principal neurons in the entorhinal cortex of macaque monkeys. J. Comp. Neurol. 470(3), 317–329 (2004)

    Article  Google Scholar 

  2. D’Angelo, E.: The human brain project. Funct. Neurol. 306(6), 50–55 (2012)

    Google Scholar 

  3. Shepherd, G.M., Mirsky, J.S., Healy, M.D., et al.: The human brain project: neuroinformatics tools for integrating, searching and modeling multidisciplinary neuroscience data. Trends Neurosci. 21(11), 460–468 (1998)

    Article  Google Scholar 

  4. Lu, W., Bushong, E.A., Shih, T.P., et al.: The cell-autonomous role of excitatory synaptic transmission in the regulation of neuronal structure and function. Neuron 78(3), 433–439 (2013)

    Article  Google Scholar 

  5. Lin, X., Li, Z., Ma, H., et al.: An evolutionary developmental approach for generation of 3D neuronal morphologies using gene regulatory networks. Neurocomputing 273, 346–356 (2017)

    Article  Google Scholar 

  6. Alavi, A., Cavanagh, B., Tuxworth, G., et al.: Automated classification of dopaminergic neurons in the rodent brain. In: International Joint Conference on Neural Networks, Atlanta, GA, United States, pp. 81–88. IEEE (2009)

    Google Scholar 

  7. Han, F., Zeng, J.: Research for neuron classification based on support vector machine. In: Third International Conference on Digital Manufacturing and Automation, Guilin, China, pp. 646–649. IEEE (2012)

    Google Scholar 

  8. Zhang, J., Deng, S., Guo, H., et al.: Application of cluster analysis in morphological characteristics of neurons. J. Zhejiang Univ. (Agric. Life Sci.) 37(5), 493–500 (2011)

    Google Scholar 

  9. Li, J.: Research on neuron classification based on ensemble of extreme learning machine. Master Thesis, Donghua University, China (2017)

    Google Scholar 

  10. Ascoli, G.A., Donohue, D.E., Halavi, M.: NeuroMorpho.Org: a central resource for neuronal morphologies. J. Neurosci. 27(35), 9247–9251 (2007)

    Article  Google Scholar 

  11. Scorcioni, R., Polavaram, S., Ascoli, G.A.: L-Measure: a web-accessible tool for the analysis, comparison and search of digital reconstructions of neuronal morphologies. Nat. Protoc. 3(5), 866–876 (2008)

    Article  Google Scholar 

  12. Ascoli, G.A.: Computational Neuroanatomy: Principles and Methods. Humana Press, Totowa (2002)

    Book  Google Scholar 

  13. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015)

    Article  Google Scholar 

  14. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  15. Erb, R.J.: Introduction to backpropagation neural network computation. Pharm. Res. 10(2), 165–170 (1993)

    Article  Google Scholar 

  16. He, K., Zhang, X., Ren, S., et al.: Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, United States, pp. 770–778. IEEE (2016)

    Google Scholar 

  17. Wang, Y., Moulin, P.: Optimized feature extraction for learning-based image steganalysis. IEEE Trans. Inf. Forensics Secur. 2(1), 31–45 (2007)

    Article  Google Scholar 

  18. Diederik P, Kingma., Jimmy, Ba.: Adam: A Method for Stochastic Optimization. Computer Science (2014)

    Google Scholar 

  19. Salton, G.: A vector space model for automatic indexing. Commun. ACM 18(11), 613–620 (1974)

    Article  MathSciNet  Google Scholar 

  20. Fukunaga, K., Hostetler, L.: Optimization of k nearest neighbor density estimates. IEEE Trans. Inf. Theory 19(3), 320–326 (1973)

    Article  MathSciNet  Google Scholar 

  21. Mcdonald, G.C.: Ridge regression. Wiley Interdisc. Rev. Comput. Stat. 1(1), 93–100 (2010)

    Article  Google Scholar 

  22. Ukil, A.: Support vector machine. Comput. Sci. 1(4), 1–28 (2002)

    Google Scholar 

  23. Greff, K., Srivastava, R.K., Koutník, J., et al.: LSTM: a search space odyssey. IEEE Trans. Neural Netw. Learn. Syst. 28(10), 2222–2232 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgment

The work is supported by the National Natural Science Foundation of China under Grant No. 61762080, and the Medium and Small Scale Enterprises Technology Innovation Foundation of Gansu Province under Grant No. 17CX2JA038.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianghong Lin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lin, X., Zheng, J., Wang, X., Ma, H. (2018). A Neuronal Morphology Classification Approach Based on Deep Residual Neural Networks. In: Cheng, L., Leung, A., Ozawa, S. (eds) Neural Information Processing. ICONIP 2018. Lecture Notes in Computer Science(), vol 11304. Springer, Cham. https://doi.org/10.1007/978-3-030-04212-7_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04212-7_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04211-0

  • Online ISBN: 978-3-030-04212-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics