Skip to main content

Measurement of Gait and Postural Control in Aging

  • Chapter
  • First Online:
Handbook of Rehabilitation in Older Adults

Part of the book series: Handbooks in Health, Work, and Disability ((SHHDW))

Abstract

Proper gait and postural stability are important factors for maintaining quality of life and performing activities of daily living with ease in older adults. Dysfunction with these motor abilities may increase the risk of falls and lead to more frequent hospitalizations. To assess gait and posture in the aging population, the appropriate variables need to be identified first. The tools and equipment to measure these variables can then be determined. For example, spatiotemporal parameters can be used to characterize gait. To quantify these parameters, timing mats, wearable inertial sensors, motion capture, force plates, and optical sensors may be used. Motion capture and force plates can also be used to measure the kinematics and kinetics of gait. To assess posture, body-worn sensors, force plates, and other specialized equipment can be used to determine acceleration patterns of the torso, center-of-pressure kinematics, or a combination of the two, respectively. Validated clinical assessments, including questionnaires and ordinal scales, can be used to further characterize gait, posture, and balance in older adults. Finally, data analysis strategies, often combined with validated tools and equipment, can be implemented in an attempt to further describe the underlying mechanisms of gait and postural control. These strategies include power spectral analysis, principal component analysis, gait variability, stabilogram-diffusion analysis, and the pinned-polymer model and fluctuation-dissipation theorem applied to postural control. With this information, the healthcare practitioner may be more aware of the measurement tools and strategies to monitor changes in gait and posture in the aging population.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrawa, Y., Carey, J., Hoffman, H., Sklare, D., & Schubert, M. (2011). The modified Romberg balance test. Otology & Neurotology, 32(8), 1309–1311.

    Article  Google Scholar 

  • Alexander, G., & Crutcher, M. (1990). Functional architecture of basal ganglia circuits: Neural substrates of parallel processing. Trends in Neurosciences, 13(7), 266–271.

    Article  PubMed  Google Scholar 

  • Alfieri, F., Riberto, M., Gatz, L., Ribeiro, C., Lopes, J., & Battistella, L. (2012). Comparison of multisensory and strength training for postural control in the elderly. Clinical Interventions in Aging, 7, 119–125.

    Article  PubMed Central  PubMed  Google Scholar 

  • Almarwani, M., Van Swearingen, J., Perera, S., Sparto, P., & Brach, J. (2016). Challenging the motor control of walking: Gait variability during slower and faster pace walking conditions in younger and older adults. Archives of Gerontology and Geriatrics, 66, 54–61.

    Article  PubMed  Google Scholar 

  • Aminian, K., Najafi, B., Büla, C., Leyvraz, P.-F., & Robert, P. (2002). Spatio-temporal parameters of gait measured by an ambulatory system using miniature gyroscopes. Journal of Biomechanics, 35(5), 689–699.

    Article  PubMed  Google Scholar 

  • Autenrieth, C., Karrasch, S., Heier, M., Gorzelniak, L., Ladwig, K.-H., Peters, A., & Döring, A. (2013). Decline in gait performance detected by an electronic walkway system in 907 older adults of the population-based KORA-age study. Gerontology, 59(2), 165–173.

    Article  PubMed  Google Scholar 

  • Balasubramanian, C., Clark, D., & Gouelle, A. (2015). Validity of the gait variability index in older adults: Effect of aging and mobility impairments. Gait & Posture, 41(4), 941–946.

    Article  Google Scholar 

  • Beauchet, O., Allali, G., Annweiler, C., Bridenbaugh, S., Assal, F., Kressig, R., & Herrmann, F. (2009). Gait variability among healthy adults: Low and high stride-to-stride variability are both a reflection of gait stability. Gerontology, 55(6), 702–706.

    Article  PubMed  Google Scholar 

  • Beauchet, O., Allali, G., Sekhon, H., Verghese, J., Guilain, S., Steinmetz, J.-P., . . . Helbostad, J. (2017). Guidelines for assessment of gait and reference values for spatiotemporal gait parameters in older adults: The biomathics and Canadian gait consortiums initiative. Frontiers in Human Neuroscience, 11, 353.

    Article  PubMed Central  PubMed  Google Scholar 

  • Benjuya, N., Melzer, I., & Kaplanski, J. (2004). Aging-induced shifts from a reliance on sensory input to muscle cocontraction during balanced standing. The Journals of Gerontology Series A, 59(2), 166–171.

    Article  Google Scholar 

  • Berg, K., Maki, B., Williams, J., Holliday, P., & Wood-Dauphinee, S. (1992). Clinical and laboratory measures of postural balance in an elderly population. Archives of Physical Medicine and Rehabilitation, 73(11), 1073–1080.

    PubMed  Google Scholar 

  • Berg, K., Wood-Dauphinee, S., Williams, J., & Gayton, D. (1989). Measuring balance in the elderly: Preliminary development of an instrument. Physiotherapy Canada, 41(6), 304–311.

    Article  Google Scholar 

  • Berg, K., Wood-Dauphinee, S., Williams, J., & Maki, B. (1992). Measuring balance in the elderly: Validation of an instrument. Canadian Journal of Public Health, 83(Suppl 2), S7–S11.

    PubMed  Google Scholar 

  • Berger, L., Chuzel, M., Buisson, G., & Rougier, P. (2005). Undisturbed upright stance control in the elderly: Part 2. Postural-control impairments of elderly fallers. Journal of Motor Behavior, 37(5), 359–366.

    Article  PubMed  Google Scholar 

  • Bilney, B., Morris, M., & Webster, K. (2003). Concurrent related validity of the GAITRite walkway system for quantification of the spatial and temporal parameters of gait. Gait & Posture, 17(1), 68–74.

    Article  Google Scholar 

  • Blake, A., Morgan, K., Bendall, M., Dallosso, H., Ebrahim, S., Arie, T., … Bassey, E. (1988). Falls by elderly people at home: Prevalence and associated factors. Age and Ageing, 17(6), 365–372.

    Article  PubMed  Google Scholar 

  • Błaszczyk, J. (2016). The use of force-plate posturography in the assessment of postural instability. Gait & Posture, 44, 1–6.

    Article  Google Scholar 

  • Blaszczyk, J., Lowe, D., & Hansen, P. (1994). Ranges of postural stability and their changes in the elderly. Gait & Posture, 2, 1–7.

    Article  Google Scholar 

  • Bogle Thorbahn, L., & Newton, R. (1996). Use of the Berg Balance Test to predict falls in elderly persons. Physical Therapy, 76(6), 576–583.

    Article  PubMed  Google Scholar 

  • Bohannon, R. (1997). Reference values for extremity muscle strength obtained by hand-held dynamometry from adults aged 20 to 79 years. Archives of Physical Medicine and Rehabilitation, 78(1), 26–32.

    Article  PubMed  Google Scholar 

  • Bohannon, R., Larkin, P., Cook, A., Gear, J., & Singer, J. (1984). Decrease in timed balance test scores with aging. Physical Therapy, 64(7), 1067–1070.

    Article  PubMed  Google Scholar 

  • Borowicz, A., Zasadzka, E., Gaczkowska, A., Gawłowska, O., & Pawlaczyk, M. (2016). Assessing gait and balance impairment in elderly residents of nursing homes. Journal of Physical Therapy Science, 28(9), 2486–2490.

    Article  PubMed Central  PubMed  Google Scholar 

  • Brach, J., Berlin, J., VanSwearingen, J., Newman, A., & Studenski, S. (2005). Too much or too little step width variability is associated with a fall history in older persons who walk at or near normal gait speed. Journal of Neuroengineering and Rehabilitation, 2(1), 21.

    Article  PubMed Central  PubMed  Google Scholar 

  • Brown, M., Sinacore, D., & Host, H. (1995). The relationship of strength to function in the older adult. The Journals of Gerontology Series A, 50A, 55–59.

    Article  Google Scholar 

  • Callisaya, M., Blizzard, L., Schmidt, M., Martin, K., McGinley, J., Sanders, L., & Srikanth, V. (2011). Gait, gait variability and the risk of multiple incident falls in older people: A population-based study. Age and Ageing, 40(4), 481–487.

    Article  PubMed  Google Scholar 

  • Callisaya, M., Blizzard, L., Schmidt, M., McGinley, J., & Srikanth, V. (2010). Ageing and gait variability – A population-based study of older people. Age and Ageing, 39(2), 191–197.

    Article  PubMed  Google Scholar 

  • Camargo, M., Barela, J., Nozabieli, A., Mantovani, A., Martinelli, A., & Fregonesi, C. (2015). Balance and ankle muscle strength predict spatiotemporal gait parameters in individuals with diabetic peripheral neuropathy. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 9(2), 79–84.

    Article  Google Scholar 

  • Camarri, B., Eastwood, P., Cecins, N., Thompson, P., & Jenkins, S. (2006). Six minute walk distance in healthy subjects aged 55–75 years. Respiratory Medicine, 100(4), 658–665.

    Article  PubMed  Google Scholar 

  • Cattagni, T., Scaglioni, G., Laroche, D., Gremeaux, V., & Martin, A. (2016). The involvement of ankle muscles in maintaining balance in the upright posture is higher in elderly fallers. Experimental Gerontology, 77, 38–45.

    Article  PubMed  Google Scholar 

  • Cesari, M., Kritchevsky, S., Penninx, B., Nicklas, B., Simonsick, E., Newman, A., … Pahor, M. (2005). Prognostic value of usual gait speed in well-functioning older people – Results from the health, aging and body composition study. Journal of the American Geriatrics Society, 53(10), 1675–1680.

    Article  PubMed  Google Scholar 

  • Chau, T. (2001). A review of analytical techniques for gait data. Part 1: Fuzzy, statistical and fractal methods. Gait & Posture, 13(1), 49–66.

    Article  Google Scholar 

  • Chodzko-Zajko, W., Proctor, D., Fiatarone Singh, M., Minson, C., Nigg, C., Salem, G., … Skinner, J. (2009). Exercise and physical activity for older adults. Medicine & Science in Sports & Exercise, 41(7), 1510–1530.

    Article  Google Scholar 

  • Chow, C., & Collins, J. (1995). Pinned polymer model of posture control. Physical Review E, 52(1), 907–912.

    Article  Google Scholar 

  • Clark, S., Rose, D., & Fujimoto, K. (1997). Generalizability of the limits of stability test in the evaluation of dynamic balance among older adults. Archives of Physical Medicine and Rehabilitation, 78(10), 1078–1084.

    Article  PubMed  Google Scholar 

  • Cleary, K., & Skornyakov, E. (2017). Predicting falls in community dwelling older adults using the activities-specific balance confidence scale. Archives of Gerontology and Geriatrics, 72, 142–145.

    Article  PubMed  Google Scholar 

  • Collins, J., & De Luca, C. (1993). Open-loop and closed-loop control of posture: A random-walk analysis of center-of-pressure trajectories. Experimental Brain Research, 95(2), 308–318.

    Article  PubMed  Google Scholar 

  • Collins, J., De Luca, C., Burrows, A., & Lipsitz, L. (1995). Age-related changes in open-loop and closed-loop postural control mechanisms. Experimental Brain Research, 104(3), 480–492.

    Article  PubMed  Google Scholar 

  • Connelly, D., Thomas, B., Cliffe, S., Perry, W., & Smith, R. (2009). Clinical utility of the 2-minute walk test for older adults living in long-term care. Physiotherapy Canada, 61(2), 78–87.

    Article  PubMed Central  PubMed  Google Scholar 

  • Conradsson, M., Lundin-Olsson, L., Lindelöf, N., Littbrand, H., Malmqvist, L., Gustafson, Y., & Rosendahl, E. (2007). Berg balance scale: Intrarater rest-retest reliability among older people dependent in activities of daily living and living in residential care facilities. Physical Therapy, 87(9), 1155–1163.

    Article  PubMed  Google Scholar 

  • Corriveau, H., Hébert, R., Prince, F., & Raîche, M. (2000). Intrasession reliability of the “center of pressure minus center of mass” variable of postural control in the healthy elderly. Archives of Physical Medicine and Rehabilitation, 81(1), 45–48.

    PubMed  Google Scholar 

  • Corriveau, H., Hébert, R., Prince, F., & Raîche, M. (2001). Postural control in the elderly: An analysis of test-retest and interrater reliability of the COP-COM variable. Archives of Physical Medicine and Rehabilitation, 82(1), 80–85.

    Article  PubMed  Google Scholar 

  • da Costa Barbosa, R., & Vieira, M. (2017). Postural control of elderly adults on inclined surfaces. Annals of Biomedical Engineering, 45(3), 726–738.

    Article  PubMed  Google Scholar 

  • Dadashi, F., Mariani, B., Rochat, S., Büla, C., Santos-Eggimann, B., & Aminian, K. (2013). Gait and foot clearance parameters obtained using shoe-worn inertial sensors in a large-population sample of older adults. Sensors, 14(1), 443–457.

    Article  PubMed  PubMed Central  Google Scholar 

  • de Groot, M., van der Jagt-Willems, H., van Campen, J., Lems, W., Beijnen, J., & Lamoth, C. (2014). A flexed posture in elderly patients is associated with impairments in postural control during walking. Gait & Posture, 39(2), 767–772.

    Article  Google Scholar 

  • Dehzangi, O., Zhao, Z., Bidmeshki, M.-M., Biggan, J., Ray, C., & Jafari, R. (2013). The impact of vibrotactile biofeedback on the excessive walking sway and the postural control in elderly. Proceedings of the 4th Conference on Wireless Health, 3.

    Google Scholar 

  • Del Din, S., Godfrey, A., & Rochester, L. (2016). Validation of an accelerometer to quantify a comprehensive battery of gait characteristics in healthy older adults and Parkinson’s disease: Toward clinical and at home use. IEEE Journal of Biomedical and Health Informatics, 20(3), 838–847.

    Article  PubMed  Google Scholar 

  • Del Din, S., Hickey, A., Hurwitz, N., Mathers, J., Rochester, L., & Godfrey, A. (2016). Measuring gait with an accelerometer-based wearable: Influence of device location, testing protocol and age. Physiological Measurement, 37(10), 1785–1797.

    Article  PubMed  Google Scholar 

  • Deluzio, K., Harrison, A., Coffey, N., & Caldwell, G. (2014). Analysis of biomechanical waveform data. In D. Robertson, G. Caldwell, J. Hamill, G. Kamen, & S. Whittlesey (Eds.), Research methods in biomechanics (pp. 317–337). Champaign, IL: Human Kinetics.

    Google Scholar 

  • Derrick, T. (2014). Signal processing. In D. Robertson, G. Caldwell, J. Hamill, G. Kamen, & S. Whittlesey (Eds.), Research methods in biomechanics (pp. 279–290). Champaign, IL: Human Kinetics.

    Google Scholar 

  • Dicharry, J. (2010). Kinematics and kinetics of gait: From lab to clinic. Clinics in Sports Medicine, 29(3), 347–364.

    Article  PubMed  Google Scholar 

  • Donath, L., Faude, O., Bridenbaugh, S., Roth, R., Soltermann, M., Kressig, R., & Zahner, L. (2014). Transfer effects of fall training on balance performance and spatiotemporal gait parameters in healthy community-dwelling older adults: A pilot study. Journal of Aging and Physical Activity, 22(3), 324–333.

    Article  PubMed  Google Scholar 

  • Donoghue, O., Cronin, H., Savva, G., O’Regan, C., & Kenny, R. (2013). Effects of fear of falling and activity restriction on normal and dual task walking in community dwelling older adults. Gait & Posture, 38(1), 120–124.

    Article  Google Scholar 

  • Drusini, A., Eleazer, G., Caiazzo, M., Veronese, E., Carrara, N., Ranzato, C., … Wieland, D. (2002). One-leg standing balance and functional status in an elderly community-dwelling population in northeast Italy. Aging Clinical and Experimental Research, 14(1), 42–46.

    Article  PubMed  Google Scholar 

  • Duncan, P., Weiner, D., Chandler, J., & Studenski, S. (1990). Functional reach: A new clinical measure of balance. Journal of Gerontology, 45(6), M192–M197.

    Article  PubMed  Google Scholar 

  • Farley, C., & Ferris, D. (1998). Biomechanics of walking and running: Center of mass movements to muscle action. Exercise and Sport Sciences Reviews, 26, 253–285.

    Article  PubMed  Google Scholar 

  • Ferraro, R., Pinto-Zipp, G., Simpkins, S., & Clark, M. (2013). Effects of an inclined walking surface and balance abilities on spatiotemporal gait parameters of older adults. Journal of Geriatric Physical Therapy, 36(1), 31–38.

    Article  PubMed  Google Scholar 

  • Ferrucci, L., Baldasseroni, S., Bandinelli, S., de Alfieri, W., Cartei, A., Calvani, D., … Marchionni, N. (2000). Disease severity and health-related quality of life across different chronic conditions. Journal of the American Geriatrics Society, 48(11), 1490–1495.

    Article  PubMed  Google Scholar 

  • Fève, A., Fénelon, G., Wallays, C., Rémy, P., & Guillard, A. (1993). Axial motor disturbances after hypoxic lesions of the globus pallidus. Movement Disorders, 8(3), 321–326.

    Article  PubMed  Google Scholar 

  • Franchignoni, F., Horak, F., Godi, M., Nardone, A., & Giordano, A. (2010). Using psychometric techniques to improve the balance evaluation systems test: The mini-BESTest. Journal of Rehabilitation Medicine, 42(4), 323–331.

    Article  PubMed  Google Scholar 

  • Freitas, S., Wieczorek, S., Marchetti, P., & Duarte, M. (2005). Age-related changes in human postural control of prolonged standing. Gait & Posture, 22(4), 322–330.

    Article  Google Scholar 

  • Fujiwara, K., Kiyota, T., Maeda, K., & Horak, F. (2007). Postural control adaptability to floor oscillation in the elderly. Journal of Physiological Anthropology, 26(4), 485–493.

    Article  PubMed  Google Scholar 

  • Gabell, A., & Nayak, U. (1984). The effect of age on variability in gait. Journal of Gerontology, 39(6), 662–666.

    Article  PubMed  Google Scholar 

  • Galán-Mercant, A., & Cuesta-Vargas, A. (2014). Differences in trunk accelerometry between frail and non-frail elderly persons in functional tasks. BMC Research Notes, 7(1), 100.

    Article  PubMed Central  PubMed  Google Scholar 

  • Gillain, S., Warzee, E., Lekeu, F., Wojtasik, V., Maquet, D., Croisier, J.-L., … Petermans, J. (2009). The value of instrumental gait analysis in elderly healthy, MCI or Alzheimer’s disease subjects and a comparison with other clinical tests used in single and dual-task conditions. Annals of Physical and Rehabilitation Medicine, 52(6), 453–474.

    Article  PubMed  Google Scholar 

  • Gomes, M., Reis, J., Carvalho, R., Tanaka, E., Hyppolito, M., & Abreu, D. (2015). Analysis of postural control and muscular performance in young and elderly women in different age groups. Brazilian Journal of Physical Therapy, 19(1), 1–9.

    Article  PubMed Central  PubMed  Google Scholar 

  • Gouelle, A., Mégrot, F., Presedo, A., Husson, I., Yelnik, A., & Penneçot, G.-F. (2013). The gait variability index: A new way to quantify fluctuation magnitude of spatiotemporal parameters during gait. Gait & Posture, 38(3), 461–465.

    Article  Google Scholar 

  • Grimm, B., & Bolink, S. (2016). Evaluating physical function and activity in the elderly patient using wearable motion sensors. EFORT Open Reviews, 1(5), 112–120.

    Article  PubMed Central  PubMed  Google Scholar 

  • Guedes, R., Dias, R., Pereira, L., Silva, S., Lustosa, L., & Dias, J. (2014). Influence of dual task and frailty on gait parameters of older community-dwelling individuals. Brazilian Journal of Physical Therapy, 18(5), 445–452.

    Article  PubMed Central  PubMed  Google Scholar 

  • Gwin, J., Gramann, K., Makeig, S., & Ferris, D. (2011). Electrocortical activity is coupled to gait cycle phase during treadmill walking. NeuroImage, 54(2), 1289–1296.

    Article  PubMed  Google Scholar 

  • Hagedorn, T., Dufour, A., Golightly, Y., Riskowski, J., Hillstrom, H., Casey, V., & Hannan, M. (2013). Factors affecting center of pressure in older adults: The Framingham Foot Study. Journal of Foot and Ankle Research, 6(1), 18.

    Article  PubMed Central  PubMed  Google Scholar 

  • Hanada, E., Johnson, M., & Hubley-Kozey, C. (2011). A comparison of trunk muscle activation amplitudes during gait in older adults with and without chronic low back pain. PM&R, 3(10), 920–928.

    Article  Google Scholar 

  • Hawker, K., & Lang, A. (1990). Hypoxic-ischemic damage of the basal ganglia case reports and a review of the literature. Movement Disorders, 5(3), 219–224.

    Article  PubMed  Google Scholar 

  • Hernandez, D., & Rose, D. (2008). Predicting which older adults will or will not fall using the Fullerton advanced balance scale. Archives of Physical Medicine and Rehabilitation, 89(12), 2309–2315.

    Article  PubMed  Google Scholar 

  • Hess, R., Brach, J., Piva, S., & VanSwearingen, J. (2010). Walking skill can be assessed in older adults: Validity of the figure-of-8 walk test. Physical Therapy, 90(1), 89–99.

    Article  PubMed Central  PubMed  Google Scholar 

  • Hollman, J., Childs, K., McNeil, M., Mueller, A., Quilter, C., & Youdas, J. (2010). Number of strides required for reliable measurements of pace, rhythm and variability parameters of gait during normal and dual task walking in older individuals. Gait & Posture, 32(1), 23–28.

    Article  Google Scholar 

  • Hollman, J., McDade, E., & Petersen, R. (2011). Normative spatiotemporal gait parameters in older adults. Gait & Posture, 34(1), 111–118.

    Article  Google Scholar 

  • Horak, F. (1987). Clinical measurement of postural control in adults. Physical Therapy, 67(12), 1881–1885.

    Article  PubMed  Google Scholar 

  • Horak, F. (1997). Clinical assessment of balance disorders. Gait & Posture, 6, 76–84.

    Article  Google Scholar 

  • Horak, F., Wrisley, D., & Frank, J. (2009). The balance evaluation systems test (BESTest) to differentiate balance deficits. Physical Therapy, 89(5), 484–498.

    Article  PubMed Central  PubMed  Google Scholar 

  • Hsiao-Wecksler, E., Katdare, K., Matson, J., Liu, W., Lipsitz, L., & Collins, J. (2003). Predicting the dynamic postural control response from quiet-stance behavior in elderly adults. Journal of Biomechanics, 36(9), 1327–1333.

    Article  PubMed  Google Scholar 

  • Hughes, S., Dunlop, D., Edelman, P., Chang, R., & Singer, R. (1994). Impact of joint impairment on longitudinal disability in elderly persons. Journal of Gerontology, 49(6), S291–S300.

    Article  PubMed  Google Scholar 

  • IJmker, T., & Lamoth, C. (2012). Gait and cognition: The relationship between gait stability and variability with executive function in persons with and without dementia. Gait & Posture, 35(1), 126–130.

    Article  Google Scholar 

  • Inoue, W., Ikezoe, T., Tsuboyama, T., Sato, I., Malinowska, K., Kawaguchi, T., … Ichihashi, N. (2017). Are there different factors affecting walking speed and gait cycle variability between men and women in community-dwelling older adults? Aging Clinical and Experimental Research, 29(2), 215–221.

    Article  PubMed  Google Scholar 

  • Ishizaki, T., Furuna, T., Yoshida, Y., Iwasa, H., Shimada, H., Yoshida, H., … Suzuki, T. (2011). Declines in physical performance by sex and age among nondisabled community-dwelling older Japanese during a 6-year period. Journal of Epidemiology, 21(3), 176–183.

    Article  PubMed Central  PubMed  Google Scholar 

  • Item-Glatthorn, J., & Maffiuletti, N. (2014). Clinical assessment of spatiotemporal gait parameters in patients and older adults. Journal of Visualized Experiments, 93, e51878.

    Google Scholar 

  • Jacobson, G., & Newman, C. (1990). The development of the dizziness handicap inventory. Archives of Otolaryngology – Head & Neck Surgery, 116(4), 424–427.

    Article  Google Scholar 

  • Jbabdi, M., Boissy, P., & Hamel, M. (2008). Assessing control of postural stability in community-living older adults using performance-based limits of stability. BMC Geriatrics, 8, 8.

    Article  PubMed Central  PubMed  Google Scholar 

  • Jette, A., Branch, L., & Berlin, J. (1990). Musculoskeletal impairments and physical disablement among the aged. Journal of Gerontology, 45(6), M203–M208.

    Article  PubMed  Google Scholar 

  • Jonsson, E., Henriksson, M., & Hirschfeld, H. (2003). Does the functional reach test reflect stability limits in elderly people. Journal of Rehabilitation Medicine, 35(1), 26–30.

    Article  PubMed  Google Scholar 

  • Josephs, S., Pratt, M., Calk Meadows, E., Thurmond, S., & Wagner, A. (2016). The effectiveness of Pilates on balance and falls in community dwelling older adults. Journal of Bodywork and Movement Therapies, 20(4), 815–823.

    Article  PubMed  Google Scholar 

  • Kaczmarczyk, K., Wiszomirska, I., Błażkiewicz, M., Wychowański, M., & Wit, A. (2017). First signs of elderly gait for women. Medycyna Pracy, 68(4), 441–448.

    PubMed  Google Scholar 

  • Kasahara, S., Saito, H., Anjiki, T., & Osanai, H. (2015). The effect of aging on vertical postural control during the forward and backward shift of the center of pressure. Gait & Posture, 42(4), 448–454.

    Article  Google Scholar 

  • Kejonen, P., Kauranen, K., Ahasan, R., & Vanharanta, H. (2002). Motion analysis measurements of body movements during standing: Association with age and sex. International Journal of Rehabilitation Research, 25(4), 297–304.

    Article  PubMed  Google Scholar 

  • Kirkwood, R., Gomes, H., Sampaio, R., Furtado, S., & Moreira, B. (2016). Spatiotemporal and variability gait data in community-dwelling elderly women from Brazil. Brazilian Journal of Physical Therapy, 20(3), 258–266.

    Article  PubMed Central  PubMed  Google Scholar 

  • Kistler. (2017). Biomechanics – Force measurement solutions. Retrieved from: https://www.kistler.com/en/applications/sensor-technology/biomechanics-and-force-plate/

  • Knobe, M., Giesen, M., Plate, S., Gradl-Dietsch, G., Buecking, B., Eschbach, D., … Pape, H.-C. (2016). The Aachen mobility and balance Index to measure physiological falls risk: A comparison with the Tinetti POMA Scale. European Journal of Trauma and Emergency Surgery, 42(5), 537–545.

    Article  PubMed  Google Scholar 

  • Kobayashi, Y., Hobara, H., Heldoorn, T., Kouchi, M., & Mochimaru, M. (2016). Age-independent and age-dependent sex differences in gait pattern determined by principal component analysis. Gait & Posture, 46, 11–17.

    Article  Google Scholar 

  • Kornetti, D., Fritz, S., Chiu, Y.-P., Light, K., & Velozo, C. (2004). Rating scale analysis of the Berg balance scale. Archives of Physical Medicine and Rehabilitation, 85(7), 1128–1135.

    Article  PubMed  Google Scholar 

  • Kuo, A., & Donelan, J. (2010). Dynamic principles of gait and their clinical implications. Physical Therapy, 90(2), 157–174.

    Article  PubMed Central  PubMed  Google Scholar 

  • Kwak, C.-J., Kim, Y., & Lee, S. (2016). Effects of elastic-band resistance exercise on balance, mobility and gait function, flexibility and fall efficacy in elderly people. Journal of Physical Therapy Science, 28(11), 3189–3196.

    Article  PubMed Central  PubMed  Google Scholar 

  • la Fougère, C., Zwergal, A., Rominger, A., Förster, S., Fesl, G., Dieterich, M., … Jahn, K. (2010). Real versus imagined locomotion: A [18F]-FDG PET-fMRI comparison. NeuroImage, 50(4), 1589–1598.

    Article  PubMed  Google Scholar 

  • Lajoie, Y., & Gallagher, S. (2004). Predicting falls within the elderly community: Comparison of postural sway, reaction time, the Berg balance scale and the activities-specific balance confidence (ABC) scale for comparing fallers and non-fallers. Archives of Gerontology and Geriatrics, 38(1), 11–26.

    Article  PubMed  Google Scholar 

  • Lamoth, C., & van Heuvelen, M. (2012). Sports activities are reflected in the local stability and regularity of body sway: Older ice-skaters have better postural control than inactive elderly. Gait & Posture, 35(3), 489–493.

    Article  Google Scholar 

  • Laughton, C., Slavin, M., Katdare, K., Nolan, L., Bean, J., Kerrigan, D., … Collins, J. (2003). Aging, muscle activity, and balance control: Physiologic changes associated with balance impairment. Gait & Posture, 18(2), 101–108.

    Article  Google Scholar 

  • Lauk, M., Chow, C., Pavlik, A., & Collins, J. (1998). Human balance out of equilibrium: Nonequilibrium statistical mechanics in posture control. Physical Review Letters, 80(12), 413–416.

    Article  Google Scholar 

  • Lee, I.-H., & Park, S.-Y. (2013). A comparison of gait characteristics in the elderly people, people with knee pain, and people who are walker dependent people. Journal of Physical Therapy Science, 25(8), 973–976.

    Article  PubMed Central  PubMed  Google Scholar 

  • Lienhard, K., Schneider, D., & Maffiuletti, N. (2013). Validity of the Optogait photoelectric system for the assessment of spatiotemporal gait parameters. Medical Engineering & Physics, 35(4), 500–504.

    Article  Google Scholar 

  • Lim, S., Horslen, B., Davis, J., Allum, J., & Carpenter, M. (2016). Benefits of multi-session balance and gait training with multi-modal biofeedback in healthy older adults. Gait & Posture, 47, 10–17.

    Article  Google Scholar 

  • Lopes, L., Ueda, L., Kunzler, M., Britto, M., & Carpes, F. (2014). Leg skin stimulation can be a strategy to improve postural control in the elderly. Neuroscience Letters, 562, 60–62.

    Article  PubMed  Google Scholar 

  • Lord, S., Clark, R., & Webster, I. (1991). Physiological factors associated with falls in an elderly population. Journal of the American Geriatrics Society, 39(12), 1194–1200.

    Article  PubMed  Google Scholar 

  • Lord, S., Galna, B., Verghese, J., Coleman, S., Burn, D., & Rochester, L. (2013). Independent domains of gait in older adults and associated motor and nonmotor attributes: Validation of a factor analysis approach. The Journals of Gerontology Series A, 68(7), 820–827.

    Article  Google Scholar 

  • Lord, S., Menz, H., & Tiedemann, A. (2003). A physiological profile approach to falls risk assessment and prevention. Physical Therapy, 83(3), 237–252.

    Article  PubMed  Google Scholar 

  • Lord, S., Sambrook, P., Gilbert, C., Kelly, P., Nguyen, T., Webster, I., & Eisman, J. (1994). Postural stability, falls and fractures in the elderly: Results from the Dubbo Osteoporosis Epidemiology Study. The Medical Journal of Australia, 160(11), 684–685. 688–691.

    Article  PubMed  Google Scholar 

  • Lord, S., Ward, J., Williams, P., & Anstey, K. (1994). Physiological factors associated with falls in older community-dwelling women. Journal of the American Geriatrics Society, 42(10), 1110–1117.

    Article  PubMed  Google Scholar 

  • Lord, S., Weatherall, M., & Rochester, L. (2010). Community ambulation in older adults: Which internal characteristics are important? Archives of Physical Medicine and Rehabilitation, 91(3), 378–383.

    Article  PubMed  Google Scholar 

  • Maki, B. (1997). Gait changes in older adults: Predictors of falls or indicators of fear. Journal of the American Geriatrics Society, 45(3), 313–320.

    Article  PubMed  Google Scholar 

  • Maki, B., Holliday, P., & Topper, A. (1994). A prospective study of postural balance and risk of falling in an ambulatory and independent elderly population. Journal of Gerontology, 49(2), M72–M84.

    Article  PubMed  Google Scholar 

  • Malatesta, D., Canepa, M., & Menendez Fernandez, A. (2017). The effect of treadmill and overground walking on preferred walking speed and gait kinematics in healthy, physically active older adults. European Journal of Applied Physiology, 117(9), 1833–1843.

    Article  PubMed  Google Scholar 

  • Manchester, D., Woollacott, M., Zederbauer-Hylton, N., & Marin, O. (1989). Visual, vestibular and somatosensory contributions to balance control in the older adult. Journal of Gerontology, 44(4), M118–M127.

    Article  PubMed  Google Scholar 

  • Mancini, M., & Horak, F. (2010). The relevance of clinical balance assessment tools to differentiate balance deficits. European Journal of Physical and Rehabilitation Medicine, 46(2), 239–248.

    PubMed Central  PubMed  Google Scholar 

  • Manly, B. (2005). Principal components analysis. In B. Manly (Ed.), Multivariate statistical methods: A primer (pp. 75–90). Boca Raton, FL: Chapman & Hall/CRC.

    Google Scholar 

  • Mariani, B., Hoskovec, C., Rochat, S., Büla, C., Penders, J., & Aminian, K. (2010). 3D gait assessment in young and elderly subjects using foot-worn inertial sensors. Journal of Biomechanics, 43(15), 2999–3006.

    Article  PubMed  Google Scholar 

  • Marques, A., Almeida, S., Carvalho, J., Cruz, J., Oliveira, A., & Jácome, C. (2016). Reliability, validity, and ability to identify fall status of the balance evaluation systems test, mini–balance evaluation systems test, and brief–balance evaluation systems test in older people living in the community. Archives of Physical Medicine and Rehabilitation, 97(12), 2166–2173.

    Article  PubMed  Google Scholar 

  • Marques, L., Rodrigues, N., Angeluni, E., Pessanha, F., Alves, N., Freire Júnior, R., … de Abreu, D. (2017). Balance evaluation of prefrail and frail community-dwelling older adults. Journal of Geriatric Physical Therapy, 1. https://doi.org/10.1519/JPT.0000000000000147

  • Marsh, A., Katula, J., Pacchia, C., Johnson, L., Koury, K., & Rejeski, W. (2006). Effect of treadmill and overground walking on function and attitudes in older adults. Medicine & Science in Sports & Exercise, 38(6), 1157–1164.

    Article  Google Scholar 

  • Masani, K., Vette, A., Abe, M., & Nakazawa, K. (2014). Center of pressure velocity reflects body acceleration rather than body velocity during quiet standing. Gait & Posture, 39(3), 946–952.

    Article  Google Scholar 

  • Mathias, S., Nayak, U., & Isaacs, B. (1986). Balance in elderly patients: The “get-up and go” test. Archives of Physical Medicine and Rehabilitation, 67(6), 387–389.

    PubMed  Google Scholar 

  • McKay, M., Baldwin, J., Ferreira, P., Simic, M., Vanicek, N., Wojciechowski, E., … Burns, J. (2017). Spatiotemporal and plantar pressure patterns of 1000 healthy individuals aged 3–101 years. Gait & Posture, 58, 78–87.

    Article  Google Scholar 

  • Menz, H., Latt, M., Tiedemann, A., Mun San Kwan, M., & Lord, S. (2004). Reliability of the GAITRite® walkway system for the quantification of temporo-spatial parameters of gait in young and older people. Gait & Posture, 20(1), 20–25.

    Article  Google Scholar 

  • Merrill, S., Seeman, T., Kasl, S., & Berkman, L. (1997). Gender differences in the comparison of self-reported disability and performance measures. The Journals of Gerontology Series A, 52(1), M19–M26.

    Article  Google Scholar 

  • Metitur. (2017). Good balance. Retrieved from: http://www.papapostolou.gr/clientfiles/file/pdf/Good_Balance_Brochure.pdf

  • Millor, N., Lecumberri, P., Gómez, M., Martínez-Ramírez, A., & Izquierdo, M. (2013). An evaluation of the 30-s chair stand test in older adults: Frailty detection based on kinematic parameters from a single inertial unit. Journal of Neuroengineering and Rehabilitation, 10, 86.

    Article  PubMed Central  PubMed  Google Scholar 

  • Mills, P., & Barrett, R. (2001). Swing phase mechanics of healthy young and elderly men. Human Movement Science, 20(4–5), 427–446.

    Article  PubMed  Google Scholar 

  • Mirelman, A., Herman, T., Brozgol, M., Dorfman, M., Sprecher, E., Schweiger, A., … Hausdorff, J. (2012). Executive function and falls in older adults: New findings from a five-year prospective study link fall risk to cognition. PLoS One, 7(6), e40297.

    Article  PubMed Central  PubMed  Google Scholar 

  • Misu, S., Doi, T., Asai, T., Sawa, R., Tsutsumimoto, K., Nakakubo, S., … Ono, R. (2014). Association between toe flexor strength and spatiotemporal gait parameters in community-dwelling older people. Journal of Neuroengineering and Rehabilitation, 11(1), 143.

    Article  PubMed Central  PubMed  Google Scholar 

  • Miyai, I., Tanabe, H., Sase, I., Eda, H., Oda, I., Konishi, I., … Kubota, K. (2001). Cortical mapping of gait in humans: A near-infrared spectroscopic topography study. NeuroImage, 14(5), 1186–1192.

    Article  PubMed  Google Scholar 

  • Moghadam, M., Ashayeri, H., Salavati, M., Sarafzadeh, J., Taghipoor, K., Saeedi, A., & Salehi, R. (2011). Reliability of center of pressure measures of postural stability in healthy older adults: Effects of postural task difficulty and cognitive load. Gait & Posture, 33(4), 651–655.

    Article  Google Scholar 

  • Moore, J., Korff, T., & Kinzey, S. (2005). Acute effects of a single bout of resistance exercise on postural control in elderly persons. Perceptual and Motor Skills, 100(3), 725–733.

    Article  PubMed  Google Scholar 

  • Moreira, B., Sampaio, R., & Kirkwood, R. (2015). Spatiotemporal gait parameters and recurrent falls in community-dwelling elderly women: A prospective study. Brazilian Journal of Physical Therapy, 19(1), 61–69.

    Article  PubMed Central  PubMed  Google Scholar 

  • Mortaza, N., Abu Osman, N., & Mehdikhani, N. (2014). Are the spatio-temporal parameters of gait capable of distinguishing a faller from a non-faller elderly? European Journal of Physical and Rehabilitation Medicine, 50(6), 677–691.

    PubMed  Google Scholar 

  • Mulasso, A., Roppolo, M., Liubicich, M., Settanni, M., & Rabaglietti, E. (2015). A multicomponent exercise program for older adults living in residential care facilities: Direct and indirect effects on physical functioning. Journal of Aging and Physical Activity, 23(3), 409–416.

    Article  PubMed  Google Scholar 

  • Mutlu, B., & Serbetcioglu, B. (2013). Discussion of the Dizziness Handicap Inventory. Journal of Vestibular Research, 23(6), 271–277.

    Article  PubMed  Google Scholar 

  • Myers, A., Fletcher, P., Myers, A., & Sherk, W. (1998). Discriminative and evaluative properties of the activities-specific balance confidence (ABC) scale. The Journals of Gerontology Series A, 53(4), M287–M294.

    Article  Google Scholar 

  • Nagasaki, H., Itoh, H., Hashizume, K., Furuna, T., Maruyama, H., & Kinugasa, T. (1996). Walking patterns and finger rhythm of older adults. Perceptual and Motor Skills, 82(2), 435–447.

    Article  PubMed  Google Scholar 

  • Nagy, E., Feher-Kiss, A., Barnai, M., Domján-Preszner, A., Angyan, L., & Horvath, G. (2007). Postural control in elderly subjects participating in balance training. European Journal of Applied Physiology, 100(1), 97–104.

    Article  PubMed  Google Scholar 

  • National Council on Aging. (2017). Falls prevention facts. Retrieved from: https://www.ncoa.org/news/resources-for-reporters/get-the-facts/falls-prevention-facts/

  • Natus. (2017). Balance & mobility. Retrieved from: http://www.natus.com/index.cfm?page=products_1&crid=271

  • Nnodim, J., & Yung, R. (2015). Balance and its clinical assessment in older adults – A review. Journal of Geriatric Medicine and Gerontology, 1(1).

    Google Scholar 

  • Nutt, J., Marsden, C., & Thompson, P. (1993). Human walking and higher-level gait disorders, particularly in the elderly. Neurology, 43(2), 268–279.

    Article  PubMed  Google Scholar 

  • Okuzumi, H., Tanaka, A., & Nakamura, T. (1996). Age-related changes in the magnitude of postural sway in healthy women. Journal of Human Movement Studies, 31, 249–261.

    Google Scholar 

  • Onambele, G., Narici, M., & Maganaris, C. (2006). Calf muscle-tendon properties and postural balance in old age. Journal of Applied Physiology, 100(6), 2048–2056.

    Article  PubMed  Google Scholar 

  • OptoGait. (2017). What is OptoGait. Retrieved from: http://www.optogait.com/What-is-OptoGait

  • Ostchega, Y., Harris, T., Hirsch, R., Parsons, V., Kington, R., & Katzoff, M. (2000). Reliability and prevalence of physical performance examination assessing mobility and balance in older persons in the US: Data from the third national health and nutrition examination survey. Journal of the American Geriatrics Society, 48(9), 1136–1141.

    Article  PubMed  Google Scholar 

  • Padgett, P., Jacobs, J., & Kasser, S. (2012). Is the BESTest at its best? A suggested brief version based on interrater reliability, validity, internal consistency, and theoretical construct. Physical Therapy, 92(9), 1197–1207.

    Article  PubMed  Google Scholar 

  • Pajala, S., Era, P., Koskenvuo, M., Kaprio, J., Tolvanen, A., Heikkinen, E., … Rantanen, T. (2003). Contribution of genetic and environmental effects to postural balance in older female twins. Journal of Applied Physiology, 96(1), 308–315.

    Article  PubMed  Google Scholar 

  • Pajala, S., Era, P., Koskenvuo, M., Kaprio, J., Törmäkangas, T., & Rantanen, T. (2008). Force platform balance measures as predictors of indoor and outdoor falls in community-dwelling women aged 63–76 years. The Journals of Gerontology Series A, 63(2), 171–178.

    Article  Google Scholar 

  • Pau, M., Leban, B., Collu, G., & Migliaccio, G. (2014). Effect of light and vigorous physical activity on balance and gait of older adults. Archives of Gerontology and Geriatrics, 59(3), 568–573.

    Article  PubMed  Google Scholar 

  • Perrey, S. (2014). Possibilities for examining the neural control of gait in humans with fNIRS. Frontiers in Physiology, 5, 204.

    Article  PubMed Central  PubMed  Google Scholar 

  • Petersen, T., Willerslev-Olsen, M., Conway, B., & Nielsen, J. (2012). The motor cortex drives the muscles during walking in human subjects. The Journal of Physiology, 590(10), 2443–2452.

    Article  PubMed Central  PubMed  Google Scholar 

  • Petrella, M., Neves, T., Reis, J., Gomes, M., Oliveira, R., & Abreu, D. (2012). Postural control parameters in elderly female fallers and non-fallers diagnosed or not with knee osteoarthritis. Revista Brasileira de Reumatologia, 52(4), 512–517.

    Article  PubMed  Google Scholar 

  • Piirtola, M., & Era, P. (2006). Force platform measurements as predictors of falls among older people – A review. Gerontology, 52(1), 1–16.

    Article  PubMed  Google Scholar 

  • Podsiadlo, D., & Richardson, S. (1991). The timed “Up & Go”: A test of basic functional mobility for frail elderly persons. Journal of the American Geriatrics Society, 39(2), 142–148.

    Article  PubMed  Google Scholar 

  • Potter, K., Anderberg, L., Anderson, D., Bauer, B., Beste, M., Navrat, S., & Kohia, M. (2017). Reliability, validity, and responsiveness of the Balance Evaluation Systems Test (BESTest) in individuals with multiple sclerosis. Physiotherapy. https://doi.org/10.1016/j.physio.2017.06.001

    Article  PubMed  Google Scholar 

  • Powell, L., & Myers, A. (1995). The activities-specific balance confidence (ABC) scale. The Journals of Gerontology Series A, 50A(1), M28–M34.

    Article  Google Scholar 

  • Prado, J., Dinato, M., & Duarte, M. (2011). Age-related difference on weight transfer during unconstrained standing. Gait & Posture, 33(1), 93–97.

    Article  Google Scholar 

  • Protas, E., Raines, M., & Tissier, S. (2007). Comparison of spatiotemporal and energy cost of the use of 3 different walkers and unassisted walking in older adults. Archives of Physical Medicine and Rehabilitation, 88(6), 768–773.

    Article  PubMed  Google Scholar 

  • ProtoKinetics. (2017). The Zeno Walkway. Retrieved from:http://www.protokinetics.com/zeno-walkway/

  • Riemann, B., & Lephart, S. (2002). The sensorimotor system, part I: The physiologic basis of functional joint stability. Journal of Athletic Training, 37(1), 71–79.

    PubMed Central  PubMed  Google Scholar 

  • Rispens, S., van Schooten, K., Pijnappels, M., Daffertshofer, A., Beek, P., & van Dieën, J. (2015). Identification of fall risk predictors in daily life measurements. Neurorehabilitation and Neural Repair, 29(1), 54–61.

    Article  PubMed  Google Scholar 

  • Rolenz, E., & Reneker, J. (2016). Validity of the 8-foot up and go, timed up and go, and activities-specific balance confidence scale in older adults with and without cognitive impairment. Journal of Rehabilitation Research and Development, 53(4), 511–518.

    Article  PubMed  Google Scholar 

  • Roman de Mettelinge, T., & Cambier, D. (2015). Understanding the relationship between walking aids and falls in older adults. Journal of Geriatric Physical Therapy, 38(3), 127–132.

    Article  PubMed  Google Scholar 

  • Rose, D., Lucchese, N., & Wiersma, L. (2006). Development of a multidimensional balance scale for use with functionally independent older adults. Archives of Physical Medicine and Rehabilitation, 87(11), 1478–1485.

    Article  PubMed  Google Scholar 

  • Rouhani, H., Favre, J., Crevoisier, X., & Aminian, K. (2011). Ambulatory measurement of ankle kinetics for clinical applications. Journal of Biomechanics, 44(15), 2712–2718.

    Article  PubMed  Google Scholar 

  • Ryushi, T., Kumagai, K., Hayase, H., Abe, T., Shibuya, K., & Ono, A. (2000). Effect of resistive knee extension training on postural control measures in middle aged and elderly persons. Journal of Physiological Anthropology and Applied Human Science, 19(3), 143–149.

    Article  PubMed  Google Scholar 

  • Samantaray, S., Knaryan, V., Shields, D., Cox, A., Haque, A., & Banik, N. (2015). Inhibition of calpain activation protects MPTP-induced nigral and spinal cord neurodegeneration, reduces inflammation, and improves gait dynamics in mice. Molecular Neurobiology, 52(2), 1054–1066.

    Article  PubMed Central  PubMed  Google Scholar 

  • Santos, S., da Silva, R., Terra, M., Almeida, I., de Melo, L., & Ferraz, H. (2017). Balance versus resistance training on postural control in patients with Parkinson’s disease: A randomized controlled trial. European Journal of Physical and Rehabilitation Medicine, 53(2), 173–183.

    Article  PubMed  Google Scholar 

  • Scaglioni-Solano, P., & Aragón-Vargas, L. (2015a). Age-related differences when walking downhill on different sloped terrains. Gait & Posture, 41(1), 153–158.

    Article  Google Scholar 

  • Scaglioni-Solano, P., & Aragón-Vargas, L. (2015b). Gait characteristics and sensory abilities of older adults are modulated by gender. Gait & Posture, 42(1), 54–59.

    Article  Google Scholar 

  • Schlenstedt, C., Brombacher, S., Hartwigsen, G., Weisser, B., Moller, B., & Deuschl, G. (2016). Comparison of the Fullerton advanced balance scale, Mini-BESTest, and Berg balance scale to predict falls in Parkinson disease. Physical Therapy, 96(4), 494–501.

    Article  PubMed  Google Scholar 

  • Seidler, R., Bernard, J., Burutolu, T., Fling, B., Gordon, M., Gwin, J., … Lipps, D. (2010). Motor control and aging: Links to age-related brain structural, functional, and biochemical effects. Neuroscience and Biobehavioral Reviews, 34(5), 721–733.

    Article  PubMed  Google Scholar 

  • Seidler, R., & Martin, P. (1997). The effects of short term balance training on the postural control of older adults. Gait & Posture, 6, 224–236.

    Article  Google Scholar 

  • Seino, S., Shinkai, S., Fujiwara, Y., Obuchi, S., Yoshida, H., Hirano, H., … Takahashi, R. (2014). Reference values and age and sex differences in physical performance measures for community-dwelling older Japanese: A pooled analysis of six cohort studies. PLoS One, 9(6), e99487.

    Article  PubMed Central  PubMed  Google Scholar 

  • Senden, R., Savelberg, H., Grimm, B., Heyligers, I., & Meijer, K. (2012). Accelerometry-based gait analysis, an additional objective approach to screen subjects at risk for falling. Gait & Posture, 36(2), 296–300.

    Article  Google Scholar 

  • Shumway-Cook, A., Brauer, S., & Woollacott, M. (2000). Predicting the probability for falls in community-dwelling older adults using the timed up & go test. Physical Therapy, 80(9), 896–903.

    Article  PubMed  Google Scholar 

  • Shumway-Cook, A., Gruber, W., Baldwin, M., & Liao, S. (1997). The effect of multidimensional exercises on balance, mobility, and fall risk in community-dwelling older adults. Physical Therapy, 77(1), 46–57.

    Article  PubMed  Google Scholar 

  • Simonsick, E., Meier, H., Shaffer, N., Studenski, S., & Ferrucci, L. (2016). Basal body temperature as a biomarker of healthy aging. Age, 38(5–6), 445–454.

    Article  PubMed Central  PubMed  Google Scholar 

  • Smith, E., Cusack, T., & Blake, C. (2016). The effect of a dual task on gait speed in community dwelling older adults: A systematic review and meta-analysis. Gait & Posture, 44, 250–258.

    Article  Google Scholar 

  • Spirduso, W. (1995). Balance, posture and locomotion. In W. Spirduso (Ed.), Physical dimensions of aging (pp. 155–183). Champaign, IL: Human Kinetics.

    Google Scholar 

  • Stelmach, G., & Worringham, C. (1985). Sensorimotor deficits related to postural stability. Implications for falling in the elderly. Clinics in Geriatric Medicine, 1(3), 679–694.

    Article  PubMed  Google Scholar 

  • Studenski, S., Perera, S., Wallace, D., Chandler, J., Duncan, P., Rooney, E., … Guralnik, J. (2003). Physical performance measures in the clinical setting. Journal of the American Geriatrics Society, 51(3), 314–322.

    Article  PubMed  Google Scholar 

  • Synapsys. (2017). Synapsys Posturography System (SPS). Retrieved from: http://www.synapsys.fr/en/p-synapsys-posturography-system-sps-36.htm

  • Tanaka, E., Santos, P., Reis, J., Rodrigues, N., Moraes, R., & Abreu, D. (2015). Is there a relationship between complaints of impaired balance and postural control disorder in community-dwelling elderly women? A cross-sectional study with the use of posturography. Brazilian Journal of Physical Therapy, 19(3), 186–193.

    Article  PubMed Central  PubMed  Google Scholar 

  • Tangen, G., Bergland, A., Engedal, K., & Mengshoel, A. (2017). The importance of parkinsonian signs for gait and balance in patients with Alzheimer’s disease of mild degree. Gait & Posture, 51, 159–161.

    Article  Google Scholar 

  • Tekscan. (2017). MatScan. Retrieved from: https://www.tekscan.com/products-solutions/systems/matscan

  • Tideiksaar, R. (1997). Falling in old age: Its prevention and management. New York, NY: Springer.

    Google Scholar 

  • Tinetti, M. (1986). Performance-oriented assessment of mobility problems in elderly patients. Journal of the American Geriatrics Society, 34(2), 119–126.

    Article  PubMed  Google Scholar 

  • Tinetti, M., Speechley, M., & Ginter, S. (1988). Risk factors for falls among elderly persons living in the community. New England Journal of Medicine, 319(26), 1701–1707.

    Article  Google Scholar 

  • Trojaniello, D., Cereatti, A., Pelosin, E., Avanzino, L., Mirelman, A., Hausdorff, J., & Della Croce, U. (2014). Estimation of step-by-step spatio-temporal parameters of normal and impaired gait using shank-mounted magneto-inertial sensors: Application to elderly, hemiparetic, parkinsonian and choreic gait. Journal of Neuroengineering and Rehabilitation, 11(1), 152.

    Article  PubMed Central  PubMed  Google Scholar 

  • Tucker, M., Kavanagh, J., Morrison, S., & Barrett, R. (2009). Voluntary sway and rapid orthogonal transitions of voluntary sway in young adults, and low and high fall-risk older adults. Clinical biomechanics, 24(8), 597–605.

    Article  PubMed  Google Scholar 

  • Tyagi, S., Perera, S., & Brach, J. (2017). Balance and mobility in community-dwelling older adults: Effect of daytime sleepiness. Journal of the American Geriatrics Society, 65(5), 1019–1025.

    Article  PubMed  Google Scholar 

  • Tyson, S., & DeSouza, L. (2004). Development of the Brunel Balance Assessment: A new measure of balance disability post stroke. Clinical Rehabilitation, 18(7), 801–810.

    Article  PubMed  Google Scholar 

  • Tyson, S., Hanley, M., Chillala, J., Selley, A., & Tallis, R. (2007). The relationship between balance, disability, and recovery after stroke: Predictive validity of the Brunel Balance Assessment. Neurorehabilitation and Neural Repair, 21(4), 341–346.

    Article  PubMed  Google Scholar 

  • Vandervoort, A. (1992). Effects of ageing on human neuromuscular function: Implications for exercise. Canadian Journal of Sport Sciences, 17(3), 178–184.

    PubMed  Google Scholar 

  • Verghese, J., Holtzer, R., Lipton, R., & Wang, C. (2009). Quantitative gait markers and incident fall risk in older adults. The Journals of Gerontology Series A, 64(8), 896–901.

    Article  Google Scholar 

  • Verghese, J., Holtzer, R., Oh-Park, M., Derby, C., Lipton, R., & Wang, C. (2011). Inflammatory markers and gait speed decline in older adults. The Journals of Gerontology Series A, 66(10), 1083–1089.

    Article  Google Scholar 

  • Verghese, J., Wang, C., Lipton, R., Holtzer, R., & Xue, X. (2007). Quantitative gait dysfunction and risk of cognitive decline and dementia. Journal of Neurology, Neurosurgery & Psychiatry, 78(9), 929–935.

    Article  Google Scholar 

  • Verlinden, V., van der Geest, J., Heeringa, J., Hofman, A., & Ikram, M. (2015). Gait shows a sex-specific pattern of associations with daily functioning in a community-dwelling population of older people. Gait & Posture, 41(1), 119–124.

    Article  Google Scholar 

  • Vette, A., Sayenko, D., Jones, M., Abe, M., Nakazawa, K., & Masani, K. (2017). Ankle muscle co-contractions during quiet standing are associated with decreased postural steadiness in the elderly. Gait & Posture, 55, 31–36.

    Article  Google Scholar 

  • Vicon Motion Capture Systems. (2017). What is motion capture? Retrieved from: https://www.vicon.com/what-is-motion-capture

  • Viljanen, A., Kaprio, J., Pyykko, I., Sorri, M., Pajala, S., Kauppinen, M., … Rantanen, T. (2009). Hearing as a predictor of falls and postural balance in older female twins. The Journals of Gerontology Series A, 64(2), 312–317.

    Article  Google Scholar 

  • Watelain, E., Barbier, F., Allard, P., Thevenon, A., & Angué, J. (2000). Gait pattern classification of healthy elderly men based on biomechanical data. Archives of Physical Medicine and Rehabilitation, 81(5), 579–586.

    Article  PubMed  Google Scholar 

  • Webster, K., Wittwer, J., & Feller, J. (2005). Validity of the GAITRite® walkway system for the measurement of averaged and individual step parameters of gait. Gait & Posture, 22(4), 317–321.

    Article  Google Scholar 

  • Wennberg, A., Schafer, M., LeBrasseur, N., Savica, R., Bui, H., Hagen, C., … Mielke, M. (2017). Plasma sphingolipids are associated with gait parameters in the Mayo Clinic Study of Aging. The Journals of Gerontology Series A. https://doi.org/10.1093/gerona/glx139

    Article  Google Scholar 

  • Whipple, R., Wolfson, L., & Amerman, P. (1987). The relationship of knee and ankle weakness to falls in nursing home residents: An isokinetic study. Journal of the American Geriatrics Society, 35(1), 13–20.

    Article  PubMed  Google Scholar 

  • Whitney, J., Lord, S., & Close, J. (2005). Streamlining assessment and intervention in a falls clinic using the timed up and go test and physiological profile assessments. Age and Ageing, 34(6), 567–571.

    Article  PubMed  Google Scholar 

  • Wittwer, J., Webster, K., & Hill, K. (2013). Music and metronome cues produce different effects on gait spatiotemporal measures but not gait variability in healthy older adults. Gait & Posture, 37(2), 219–222.

    Article  Google Scholar 

  • Wolfson, L., Judge, J., Whipple, R., & King, M. (1995). Strength is a major factor in balance, gait, and the occurrence of falls. The Journals of Gerontology Series A, 50 Spec No, 64–67.

    Google Scholar 

  • Yang, F., Espy, D., Bhatt, T., & Pai, Y.-C. (2012). Two types of slip-induced falls among community dwelling older adults. Journal of Biomechanics, 45(7), 1259–1264.

    Article  PubMed Central  PubMed  Google Scholar 

  • Yarasheski, K. (2003). Exercise, aging, and muscle protein metabolism. The Journals of Gerontology Series A, 58(10), M918–M922.

    Article  Google Scholar 

  • Yelnik, A., & Bonan, I. (2008). Clinical tools for assessing balance disorders. Clinical Neurophysiology, 38(6), 439–445.

    Article  PubMed  Google Scholar 

  • Yoon, S., Lee, S., & Kim, Y. (2016). Spatiotemporal characteristics of freezing of gait in patients after hypoxic-ischemic brain injury. Medicine, 95(19), e3666.

    Article  PubMed Central  PubMed  Google Scholar 

  • Yu, E., Abe, M., Masani, K., Kawashima, N., Eto, F., Haga, N., & Nakazawa, K. (2008). Evaluation of postural control in quiet standing using center of mass acceleration: Comparison among the young, the elderly, and people with stroke. Archives of Physical Medicine and Rehabilitation, 89(6), 1133–1139.

    Article  PubMed  Google Scholar 

  • Zajac, F., Neptune, R., & Kautz, S. (2002). Biomechanics and muscle coordination of human walking. Part I: Introduction to concepts, power transfer, dynamics and simulations. Gait & Posture, 16(3), 215–232.

    Article  Google Scholar 

  • Zakaria, N., Kuwae, Y., Tamura, T., Minato, K., & Kanaya, S. (2015). Quantitative analysis of fall risk using TUG test. Computer Methods in Biomechanics and Biomedical Engineering, 18(4), 426–437.

    Article  PubMed  Google Scholar 

  • Zampieri, C., Salarian, A., Carlson-Kuhta, P., Aminian, K., Nutt, J., & Horak, F. (2010). The instrumented timed up and go test: Potential outcome measure for disease modifying therapies in Parkinson’s disease. Journal of Neurology, Neurosurgery & Psychiatry, 81(2), 171–176.

    Article  Google Scholar 

  • Zanotto, D., Mamuyac, E., Chambers, A., Nemer, J., Stafford, J., Agrawal, S., & Lalwani, A. (2017). Dizziness handicap inventory score is highly correlated with markers of gait disturbance. Otology & Neurotology, 1. https://doi.org/10.1097/MAO.0000000000001586

    Article  Google Scholar 

  • Zebris Medical GmbH. (2017). The plantar pressure distribution measurement system FDM. Retrieved from: https://www.zebris.de/en/medical/products-solutions/stance-gait-and-roll-off-analysis-fdm/

  • Zhou, J., Chang, S., Cong, Y., Qin, M., Sun, W., Lian, J., … Hong, Y. (2015). Effects of 24 weeks of Tai Chi Exercise on postural control among elderly women. Research in Sports Medicine, 23(3), 302–314.

    Article  PubMed  Google Scholar 

  • Zwergal, A., Linn, J., Xiong, G., Brandt, T., Strupp, M., & Jahn, K. (2012). Aging of human supraspinal locomotor and postural control in fMRI. Neurobiology of Aging, 33(6), 1073–1084.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher T. Ray .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rigby, B.R., Ray, C.T. (2018). Measurement of Gait and Postural Control in Aging. In: Gatchel, R., Schultz, I., Ray, C. (eds) Handbook of Rehabilitation in Older Adults. Handbooks in Health, Work, and Disability. Springer, Cham. https://doi.org/10.1007/978-3-030-03916-5_5

Download citation

Publish with us

Policies and ethics