Skip to main content

Average Degree-Based Densest Subgraph Computation

  • Chapter
  • First Online:
Cohesive Subgraph Computation over Large Sparse Graphs

Part of the book series: Springer Series in the Data Sciences ((SSDS))

  • 1025 Accesses

Abstract

In this section, we study average degree-based densest subgraph computation, where average degree is usually referred to as the edge density in the literature. In Section 4.1, we give preliminaries of densest subgraphs. Approximation algorithms and exact algorithms for computing the densest subgraph of a large input graph will be discussed in Section 4.2 and in Section 4.3, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bahman Bahmani, Ravi Kumar, and Sergei Vassilvitskii. Densest subgraph in streaming and mapreduce. PVLDB, 5(5):454–465, 2012.

    Google Scholar 

  2. Oana Denisa Balalau, Francesco Bonchi, T.-H. Hubert Chan, Francesco Gullo, and Mauro Sozio. Finding subgraphs with maximum total density and limited overlap. In Proc. of WSDM’15, pages 379–388, 2015.

    Google Scholar 

  3. Sayan Bhattacharya, Monika Henzinger, Danupon Nanongkai, and Charalampos E. Tsourakakis. Space- and time-efficient algorithm for maintaining dense subgraphs on one-pass dynamic streams. In Proc. of STOC’15, pages 173–182, 2015.

    Google Scholar 

  4. Moses Charikar. Greedy approximation algorithms for finding dense components in a graph. In Proc. APPROX’00, pages 84–95, 2000.

    Google Scholar 

  5. Maximilien Danisch, T.-H. Hubert Chan, and Mauro Sozio. Large scale density-friendly graph decomposition via convex programming. In Proc. of WWW’17, pages 233–242, 2017.

    Google Scholar 

  6. Alessandro Epasto, Silvio Lattanzi, and Mauro Sozio. Efficient densest subgraph computation in evolving graphs. In Proc. of WWW’15, pages 300–310, 2015.

    Google Scholar 

  7. Giorgio Gallo, Michael D. Grigoriadis, and Robert Endre Tarjan. A fast parametric maximum flow algorithm and applications. SIAM J. Comput., 18(1):30–55, 1989.

    Article  MathSciNet  Google Scholar 

  8. Aristides Gionis and Charalampos E. Tsourakakis. Dense subgraph discovery: KDD 2015 tutorial. In Proc. of KDD’15, pages 2313–2314, 2015.

    Google Scholar 

  9. A. V. Goldberg. Finding a maximum density subgraph. Technical report, Berkeley, CA, USA, 1984.

    Google Scholar 

  10. Andrew V. Goldberg and Robert Endre Tarjan. A new approach to the maximum-flow problem. J. ACM, 35(4):921–940, 1988.

    Google Scholar 

  11. Samir Khuller and Barna Saha. On finding dense subgraphs. In Proc. of ICALP’09, pages 597–608, 2009.

    Google Scholar 

  12. Muhammad Anis Uddin Nasir, Aristides Gionis, Gianmarco De Francisci Morales, and Sarunas Girdzijauskas. Fully dynamic algorithm for top-k densest subgraphs. In Proc. of CIKM’17, pages 1817–1826, 2017.

    Google Scholar 

  13. Lu Qin, Rong-Hua Li, Lijun Chang, and Chengqi Zhang. Locally densest subgraph discovery. In Proc. of KDD’15, pages 965–974, 2015.

    Google Scholar 

  14. Nikolaj Tatti and Aristides Gionis. Density-friendly graph decomposition. In Proc. of WWW’15, pages 1089–1099, 2015.

    Google Scholar 

  15. Yubao Wu, Ruoming Jin, Jing Li, and Xiang Zhang. Robust local community detection: On free rider effect and its elimination. PVLDB, 8(7):798–809, 2015.

    Google Scholar 

  16. Yubao Wu, Ruoming Jin, Xiaofeng Zhu, and Xiang Zhang. Finding dense and connected subgraphs in dual networks. In Proc. of ICDE’15, pages 915–926, 2015.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chang, L., Qin, L. (2018). Average Degree-Based Densest Subgraph Computation. In: Cohesive Subgraph Computation over Large Sparse Graphs. Springer Series in the Data Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-03599-0_4

Download citation

Publish with us

Policies and ethics