Skip to main content

Introduction to Reverse Engineering

  • Chapter
  • First Online:
Advanced CAD Modeling

Part of the book series: Springer Tracts in Mechanical Engineering ((STME))

  • 2061 Accesses

Abstract

Reverse engineering has been practised since the beginning of technology. Fundamentally, it is about the identification of existing technical and natural solutions, and their reconstruction into new, identical or even improved technical solutions. Over the years it has flourished systematically, thanks to the development of new and technologically increasingly advanced and economically affordable measuring procedures, which allows the accurate reconstruction of not only technical principles but also detailed shapes and dimensions. This chapter explains the position of reverse engineering in the modern design and development process. It also introduces the main measuring methods for capturing data on the geometry of physical objects. These methods are divided into groups, depending on how they work and the physical laws on which they are based. We also present the main advantages and disadvantages of particular groups of methods, and recommendations for their application where the best results can be achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kai CC, Meng CS, Ching LS et al (2000) Facial prosthetic model fabrication using rapid prototyping tools. Integr Manufact Syst 11(1):42–53. https://doi.org/10.1108/09576060010303668

    Article  Google Scholar 

  2. Duhovnik J, Kljajin M, Opalić M (2009) Inženirska grafika. Fakulteta za strojništvo, Ljubljana

    Google Scholar 

  3. Kusnoto B, Evans CA (2002) Realibility of a 3d surface laser scanner for orthodontic applications. Am J Orthod Dentofac Orthop 122:342–348. https://doi.org/10.1067/mod.2002.128219

    Article  Google Scholar 

  4. Thali MJ, Braun M, Dirnhofer R (2003) Optical 3d surface digitizing in forensic medicine: 3d documentation of skin and bone injuries. Forensic Sci Int 137:203–208. https://doi.org/10.1016/j.forsciint.2003.07.009

    Article  Google Scholar 

  5. Chua CK, Chou SM, Ng WS et al (1998) An integrated experimental approach to link a laser digitiser a CAD/CAM system and a rapid prototyping system for biomedical applications. Int J Adv Manufact Technol 14:110–115. https://doi.org/10.1007/BF01322219

    Article  Google Scholar 

  6. Bradshaw G, Moss R (1999) Towards a prototype for the collection of digital medieval moulding profiles. In: Proceedings of the fifteenth annual CHArt conference held at the University of Glasgow

    Google Scholar 

  7. Bernard A, Laroche F, Ammar-Khodja S, Perry N (2007) Impact of new 3D numerical devices and environments on redesign and valorisation of mechanical systems. Ann CIRP Manufact Technol 56(1):143–148. https://doi.org/10.1016/j.cirp.2007.05.035

    Article  Google Scholar 

  8. Pieraccini M, Guidi G, Atzeni C (2001) 3D digitizing of cultural heritage. J Cult Heritage 2:63–70. https://doi.org/10.1016/S1296-2074(01)01108-6

    Article  Google Scholar 

  9. Chow S-K, Chan K-L (2009) Reconstruction of photorealistic 3D model of ceramic artefacts for interactive virtual exhibition. J Cult Heritage 10:161–173. https://doi.org/10.1016/j.culher.2008.08.011

    Article  Google Scholar 

  10. Vacharanukul K, Mekid S (2005) In-process dimensional inspection sensors. Measurement 38:204–218. https://doi.org/10.1016/j.measurement.2005.07.009

    Article  Google Scholar 

  11. Lee KH, Park H, Son S (2001) A framework for laser scan planning of freeform surfaces. Int J Adv Manufact Technol 17:171–180. https://doi.org/10.1007/s001700170187

    Article  Google Scholar 

  12. Son S, Kim S, Lee KH (2003) Path planning of multi-patched freeform surfaces for laser scanning. Int J Adv Manufact Technol 22:424–435. https://doi.org/10.1007/s00170-002-1502-0

    Article  Google Scholar 

  13. Vukašinović N, Bračun D, Možina J, Duhovnik J (2010) The influence of incident angle, object colour and distance on CNC laser scanning. Int J Adv Manufact Technol 50:265–274. https://doi.org/10.1007/s00170-009-2493-x

    Article  Google Scholar 

  14. Vukašinović N, Korošec M, Duhovnik J (2010) The influence of surface topology on the accuracy of laser triangulation scanning results = vpliv topologije površine na natančnost meritev z laserskim triangulacijskim merilnikom oblike površin. Strojniški vestnik 56(1):23–30

    Article  Google Scholar 

  15. Vukašinović N, Bračun D, Možina J, Duhovnik J (2012) A new method for defining the measurement uncertainty model of CNC laser-triangulation scanner. Int J Adv Manufact Technol 58(9):1097–1104. https://doi.org/10.1007/s00170-011-3467-3

    Article  Google Scholar 

  16. Vukašinović N, Možina J, Duhovnik J (2012) Correlation between incident angle, measurement distance, object colour and the number of acquired points at CNC laser scanning. Strojniški vestnik 58(1):23–28. https://doi.org/10.5545/sv-jme.2011.053

    Article  Google Scholar 

  17. Duhovnik J, Balić S (2004) Detail functionality analysis using the design golden loop. In: Proceeding of the conference, EDIProD’2004, Zielona Gora

    Google Scholar 

  18. Son S, Park H, Lee KH (2002) Automated laser scanning system for reverse engineering and inspection. Int J Mach Tools Manuf 42:889–897. https://doi.org/10.1016/S0890-6955(02)00030-5

    Article  Google Scholar 

  19. Chang C-C, Li Z, Cai X, Dempsey P (2007) Error control and calibration in three-dimensional anthropometric measurement of the hand by laser scanning with glass support. Measurement 40:21–27. https://doi.org/10.1016/j.measurement.2006.05.006

    Article  Google Scholar 

  20. Martinez S, Cuesta E, Barriero J, Alvarez B (2010) Analysis of laser scanning and strategies for dimensional and geometrical control. Int J Adv Manufact Technol 46(5–8):621–629. https://doi.org/10.1007/s00170-009-2106-8

    Article  Google Scholar 

  21. Wang G-J, Wang C-C, Chuang SHF (1999) Reverse engineering of sculptured surfaces by four-axis non-contacting scanning. Int J Adv Manufact Technol 15(11):800–809. https://doi.org/10.1007/s001700050135

    Article  Google Scholar 

  22. Page D, Koschan A, Sun Y, Abidi M (2003) Laser-based imaging for reverse engineering. Sens Rev Special Issue Mach Vis Laser Scanners 23(3):223–229

    Google Scholar 

  23. Yao AWL (2005) Applications of 3D scanning and reverse engineering techniques for quality control of quick response products. Int J Adv Manufact Technol 26:1284–1288. https://doi.org/10.1007/s00170-004-2116-5

    Article  Google Scholar 

  24. Willis A, Speicher J, Cooper DB (2007) Rapid prototyping 3D objects from scanned measurement data. Image Vis Comput 25:1174–1184. https://doi.org/10.1016/j.imavis.2006.06.011

    Article  Google Scholar 

  25. Soković M, Kopač J (2006) RE (reverse engineering) as necessary phase by rapid product development. Int J Mach Tools Manuf 175:398–403. https://doi.org/10.1016/j.jmatprotec.2005.04.047

    Article  Google Scholar 

  26. Vukašinović N, Kolšek T, Duhovnik J (2007) Case study—surface reconstruction from point clouds for prosthesis production. J Eng Des 18(5):475–488. https://doi.org/10.1080/09544820701403805

    Article  Google Scholar 

  27. Budak I, Hodolić J, Soković M (2005) Development of a programme system for data-point preprocessing in reverse engineering. J Mater Process Technol 162–163:730–735. https://doi.org/10.1016/j.jmatprotec.2005.02.214

    Article  Google Scholar 

  28. Budak I, Soković M, and Hodolić J (2007) Implementation of innovative procedure for error estimation in cross-sectional data-point reduction in reverse engineering. Int J Total Qual Manag Excellence 35(1–2)

    Google Scholar 

  29. Bračun D, Gruden V, Možina J (2008) A method for surface quality assessment of die-castings based on laser triangulation. Meas Sci Technol 19:1–8. https://doi.org/10.1088/0957-0233/19/4/045707

    Article  Google Scholar 

  30. Shiou FJ, Pfeifer T (2002) Strategies and processes to measure the dimensional geometry of sheet metal parts for exact laser cutting. Int J Adv Manufact Technol 15:800–809

    Google Scholar 

  31. Shiou FJ, Chen M-J (2003) Intermittent process measurement of a freeform surface profile with circular triangulation laser probe on a machining centre. Int J Adv Manufact Technol 21:365–376. https://doi.org/10.1007/s001700300042

    Article  Google Scholar 

  32. Li Y, Gu P (2004) Free-form surface inspection techniques state of the art review. Comput Aided Des 36:1395–1417. https://doi.org/10.1016/j.cad.2004.02.009

    Article  MathSciNet  Google Scholar 

  33. Zexiao X, Jianguo W, Quimei Z (2005) Complete 3D measurement in reverse engineering using a multi-probe system. Int J Mach Tools Manuf 45:1474–1486. https://doi.org/10.1016/j.ijmachtools.2005.01.028

    Article  Google Scholar 

  34. Shiou FJ, Ali YC (2005) Development of a non-contact multi-axis reverse engineering measurement system for small complex objects. In: Publishing Journal of Physics: Conference Series 13, 7th international symposium on measurement technology and intelligent instruments, pp 419–425

    Google Scholar 

  35. Fan KC (1997) A non-contact automatic measurement for free-form surface profiles. Comput Integr Manufact Syst 10(4):277–285. https://doi.org/10.1016/S0951-5240(97)00020-7

    Article  Google Scholar 

  36. Zexiao X, Quimei Z, Guoxiong Z (2004) Modelling and calibration of a structured-light-sensor-based five-axis scanning system. Measurement 36:185–194. https://doi.org/10.1016/j.measurement.2004.05.003

    Article  Google Scholar 

  37. Zexiao X, Chengguo Z, Quimei Z, Guoxiong Z (2005) Modelling and verification of a five-axis laser scanning system. Int J Adv Manufact Technol 26:391–398. https://doi.org/10.1007/s00170-004-2106-7

    Article  Google Scholar 

  38. Huang SJ, Lin CC (1997) A three-dimensional non-contact measuring system. Int J Adv Manufact Technol 13:419–425. https://doi.org/10.1007/BF01179037

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikola Vukašinović .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vukašinović, N., Duhovnik, J. (2019). Introduction to Reverse Engineering. In: Advanced CAD Modeling. Springer Tracts in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-02399-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-02399-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-02398-0

  • Online ISBN: 978-3-030-02399-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics