Skip to main content

Abstract

ANCA-associated vasculitis (AAV) is a group of disorders that is caused by inflammation affecting small blood vessels. AAV includes microscopic polyangiitis (MPA), granulomatosis with polyangiitis (GPA) renamed from Wegener’s granulomatosis, and eosinophilic granulomatosis with polyangiitis (EGPA), renamed from Churg-Strauss syndrome. AAV can be considered a complex disease; in fact, both genetic and environmental factors are involved in its susceptibility. To improve the understanding of the disease, the genetic component has been extensively studied by candidate association studies and genome-wide association studies. Most of the identified genetic AAV risk factors are common variants, which still needs further investigation to clarify their importance. In this chapter, we discuss the results of genetic studies in AAV. We also present novel approaches to identifying the causal variants in complex susceptibility loci and disease mechanisms. Finally, we discuss the limitations of current methods and the challenges that we still have to approach in order to translate genomic and epigenomic data into clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jennette JC, Falk RJ, Andrassy K, et al. Nomenclature of systemic vasculitides. Proposal of an international consensus conference. Arthritis Rheum. 1994;37:187–92.

    Article  CAS  Google Scholar 

  2. Chen M, Kallenberg CG. The environment, geoepidemiology and ANCA-associated vasculitides. Autoimmun Rev. 2010;9:A293–8.

    Article  CAS  Google Scholar 

  3. Knight A, Sandin S, Askling J. Risks and relative risks of Wegener’s granulomatosis among close relatives of patients with the disease. Arthritis Rheum. 2008;58:302–7.

    Article  Google Scholar 

  4. Manganelli P, Giacosa R, Fietta P, Zanetti A, Neri TM. Familial vasculitides: Churg-Strauss syndrome and Wegener’s granulomatosis in 2 first-degree relatives. J Rheumatol. 2003;30:618–21.

    PubMed  Google Scholar 

  5. Diabetes Genetics Initiative of Broad Institute of Harvard and MIT, Lund University, and Novartis Institutes of BioMedical Research, et al. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science. 2007;316:1331–6.

    Article  Google Scholar 

  6. Cortes A, Brown MA. Promise and pitfalls of the Immunochip. Arthritis Res Ther. 2011;13:101.

    Article  Google Scholar 

  7. Lyons PA, Rayner TF, Trivedi S, et al. Genetically distinct subsets within ANCA-associated vasculitis. N Engl J Med. 2012;367:214–23.

    Article  CAS  Google Scholar 

  8. Xie G, Roshandel D, Sherva R, et al. Association of granulomatosis with polyangiitis (Wegener’s) with HLA-DPB1∗04 and SEMA6A gene variants: evidence from genome-wide analysis. Arthritis Rheum. 2013;65:2457–68.

    Article  CAS  Google Scholar 

  9. Merkel PA, Xie G, Monach PA, et al. Identification of functional and expression polymorphisms associated with risk for antineutrophil cytoplasmic autoantibody-associated vasculitis. Arthritis Rheumatol. 2017;69:1054–66.

    Article  CAS  Google Scholar 

  10. Taneja V, Behrens M, Basal E, et al. Delineating the role of the HLA-DR4 “shared epitope” in susceptibility versus resistance to develop arthritis. J Immunol. 2008;181:2869–77.

    Article  CAS  Google Scholar 

  11. Hiwa R, Ohmura K, Arase N, et al. Myeloperoxidase/HLA class II complexes recognized by autoantibodies in microscopic polyangiitis. Arthritis Rheumatol. 2017;69:2069–80.

    Article  CAS  Google Scholar 

  12. Campbell EJ, Campbell MA, Owen CA. Bioactive proteinase 3 on the cell surface of human neutrophils: quantification, catalytic activity, and susceptibility to inhibition. J Immunol. 2000;165:3366–74.

    Article  CAS  Google Scholar 

  13. Schreiber A, Busjahn A, Luft FC, Kettritz R. Membrane expression of proteinase 3 is genetically determined. J Am Soc Nephrol. 2003;14:68–75.

    Article  CAS  Google Scholar 

  14. Mahr AD, Edberg JC, Stone JH, et al. Alpha(1)-antitrypsin deficiency-related alleles Z and S and the risk of Wegener’s granulomatosis. Arthritis Rheum. 2010;62:3760–7.

    Article  CAS  Google Scholar 

  15. Maine CJ, Hamilton-Williams EE, Cheung J, et al. PTPN22 alters the development of regulatory T cells in the thymus. J Immunol. 2012;188:5267–75.

    Article  CAS  Google Scholar 

  16. Bayley R, Kite KA, McGettrick HM, et al. The autoimmune-associated genetic variant PTPN22 R620W enhances neutrophil activation and function in patients with rheumatoid arthritis and healthy individuals. Ann Rheum Dis. 2015;74(8):1588–95.

    Article  CAS  Google Scholar 

  17. Zhang J, Zahir N, Jiang Q, et al. The autoimmune disease-associated PTPN22 variant promotes calpain-mediated Lyp/Pep degradation associated with lymphocyte and dendritic cell hyperresponsiveness. Nat Genet. 2011;43:902–7.

    Article  CAS  Google Scholar 

  18. Hasegawa K, Martin F, Huang G, Tumas D, Diehl L, Chan AC. PEST domain-enriched tyrosine phosphatase (PEP) regulation of effector/memory T cells. Science. 2004;303:685–9.

    Article  CAS  Google Scholar 

  19. Alberici F, Jayne DR. Impact of rituximab trials on the treatment of ANCA-associated vasculitis. Nephrol Dial Transplant. 2014;29:1151–9.

    Article  CAS  Google Scholar 

  20. Kamesh L, Heward JM, Williams JM, et al. CT60 and +49 polymorphisms of CTLA 4 are associated with ANCA-positive small vessel vasculitis. Rheumatology (Oxford). 2009;48:1502–5.

    Article  CAS  Google Scholar 

  21. Carr EJ, Niederer HA, Williams J, et al. Confirmation of the genetic association of CTLA4 and PTPN22 with ANCA-associated vasculitis. BMC Med Genet. 2009;10:121.

    Article  Google Scholar 

  22. Bartfai Z, Gaede KI, Russell KA, Murakozy G, Muller-Quernheim J, Specks U. Different gender-associated genotype risks of Wegener’s granulomatosis and microscopic polyangiitis. Clin Immunol. 2003;109:330–7.

    Article  CAS  Google Scholar 

  23. Wieczorek S, Hellmich B, Arning L, et al. Functionally relevant variations of the interleukin-10 gene associated with antineutrophil cytoplasmic antibody-negative Churg-Strauss syndrome, but not with Wegener’s granulomatosis. Arthritis Rheum. 2008;58:1839–48.

    Article  CAS  Google Scholar 

  24. Wieczorek S, Hoffjan S, Chan A, et al. Novel association of the CD226 (DNAM-1) Gly307Ser polymorphism in Wegener’s granulomatosis and confirmation for multiple sclerosis in German patients. Genes Immun. 2009;10:591–5.

    Article  CAS  Google Scholar 

  25. Fanciulli M, Norsworthy PJ, Petretto E, et al. FCGR3B copy number variation is associated with susceptibility to systemic, but not organ-specific, autoimmunity. Nat Genet. 2007;39:721–3.

    Article  CAS  Google Scholar 

  26. Smith KG, Clatworthy MR. FcgammaRIIB in autoimmunity and infection: evolutionary and therapeutic implications. Nat Rev Immunol. 2010;10:328–43.

    Article  CAS  Google Scholar 

  27. Dijstelbloem HM, Scheepers RH, Oost WW, et al. Fcgamma receptor polymorphisms in Wegener’s granulomatosis: risk factors for disease relapse. Arthritis Rheum. 1999;42:1823–7.

    Article  CAS  Google Scholar 

  28. Tse WY, Abadeh S, McTiernan A, Jefferis R, Savage CO, Adu D. No association between neutrophil FcgammaRIIa allelic polymorphism and anti-neutrophil cytoplasmic antibody (ANCA)-positive systemic vasculitis. Clin Exp Immunol. 1999;117:198–205.

    Article  CAS  Google Scholar 

  29. Wieczorek S, Holle JU, Muller S, Fricke H, Gross WL, Epplen JT. A functionally relevant IRF5 haplotype is associated with reduced risk to Wegener’s granulomatosis. J Mol Med (Berl). 2010;88:413–21.

    Article  Google Scholar 

  30. Kawasaki A, Inoue N, Ajimi C, et al. Association of IRF5 polymorphism with MPO-ANCA-positive vasculitis in a Japanese population. Genes Immun. 2013;14:527–9.

    Article  CAS  Google Scholar 

  31. Husmann CA, Holle JU, Moosig F, et al. Genetics of toll like receptor 9 in ANCA associated vasculitides. Ann Rheum Dis. 2014;73:890–6.

    Article  CAS  Google Scholar 

  32. Zhou XJ, Cheng FJ, Lv JC, et al. Higher DEFB4 genomic copy number in SLE and ANCA-associated small vasculitis. Rheumatology (Oxford). 2012;51:992–5.

    Article  CAS  Google Scholar 

  33. Kawasaki A, Yamashita K, Hirano F, et al. Association of ETS1 polymorphism with granulomatosis with polyangiitis and proteinase 3-anti-neutrophil cytoplasmic antibody positive vasculitis in a Japanese population. J Hum Genet. 2018;63:55–62.

    Article  CAS  Google Scholar 

  34. Vaglio A, Martorana D, Maggiore U, et al. HLA-DRB4 as a genetic risk factor for Churg-Strauss syndrome. Arthritis Rheum. 2007;56:3159–66.

    Article  CAS  Google Scholar 

  35. Wieczorek S, Hellmich B, Gross WL, Epplen JT. Associations of Churg-Strauss syndrome with the HLA-DRB1 locus, and relationship to the genetics of antineutrophil cytoplasmic antibody-associated vasculitides: comment on the article by Vaglio et al. Arthritis Rheum. 2008;58:329–30.

    Article  CAS  Google Scholar 

  36. Willcocks LC, Lyons PA, Clatworthy MR, et al. Copy number of FCGR3B, which is associated with systemic lupus erythematosus, correlates with protein expression and immune complex uptake. J Exp Med. 2008;205:1573–82.

    Article  CAS  Google Scholar 

  37. Alberici F, Martorana D, Vaglio A. Genetic aspects of anti-neutrophil cytoplasmic antibody-associated vasculitis. Nephrol Dial Transplant. 2015;30(Suppl 1):i37–45.

    CAS  PubMed  Google Scholar 

  38. Lee JC, Biasci D, Roberts R, et al. Genome-wide association study identifies distinct genetic contributions to prognosis and susceptibility in Crohn’s disease. Nat Genet. 2017;49:262–8.

    Article  CAS  Google Scholar 

  39. Alberici F, Smith RM, Fonseca M, et al. Association of a TNFSF13B (BAFF) regulatory region single nucleotide polymorphism with response to rituximab in antineutrophil cytoplasmic antibody-associated vasculitis. J Allergy Clin Immunol. 2017;139:1684–7 e10.

    Article  CAS  Google Scholar 

  40. Cartin-Ceba R, Indrakanti D, Specks U, et al. The Pharmacogenomic association of Fcgamma receptors and cytochrome P450 enzymes with response to rituximab or cyclophosphamide treatment in antineutrophil cytoplasmic antibody-associated vasculitis. Arthritis Rheumatol. 2017;69:169–75.

    Article  CAS  Google Scholar 

  41. Schirmer JH, Bremer JP, Moosig F, et al. Cyclophosphamide treatment-induced leukopenia rates in ANCA-associated vasculitis are influenced by variant CYP450 2C9 genotypes. Pharmacogenomics. 2016;17:367–74.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davide Martorana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alberici, F., Lyons, P.A., Martorana, D. (2020). Genetics of ANCA-Associated Vasculitis. In: Sinico, R., Guillevin, L. (eds) Anti-Neutrophil Cytoplasmic Antibody (ANCA) Associated Vasculitis. Rare Diseases of the Immune System. Springer, Cham. https://doi.org/10.1007/978-3-030-02239-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-02239-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-02238-9

  • Online ISBN: 978-3-030-02239-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics