Skip to main content

Application of Schwann Cells in Neural Tissue Engineering

  • Chapter
  • First Online:
Glial Cell Engineering in Neural Regeneration

Abstract

In the peripheral nervous system (PNS), Schwann cells (SCs) are the principal glial cells that myelinate axons. Unlike the central nervous system (CNS), the peripheral nervous system has the potential to regenerate after injury. SCs effectively respond to injury and help in axon regeneration during the early stage of peripheral nerve injury. Schwann cells also participate in the remyelination of axons in spinal cord injury (SCI). Following SCI, endogenous SCs migrate and invade the injury site where they associate with regenerating axons. Recent studies have demonstrated that Schwann cell transplantation can significantly enhance regeneration post-neural tissue injury. In this chapter, we review the critical role of Schwann cell in peripheral and spinal cord injuries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rosso G, Young P, Shahin V. Implications of Schwann cells biomechanics and Mechanosensitivity for peripheral nervous system physiology and pathophysiology. Front Mol Neurosci. 2017;10:345.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Jessen KR, Mirsky R. Origin and early development of Schwann cells. Microsc Res Tech. 1998;41(5):393–402.

    Article  CAS  PubMed  Google Scholar 

  3. Woodhoo A, Sommer L. Development of the Schwann cell lineage: from the neural crest to the myelinated nerve. Glia. 2008;56(14):1481–90.

    Article  PubMed  Google Scholar 

  4. Gomez-Sanchez JA, et al. Sustained axon–glial signaling induces Schwann cell Hyperproliferation, Remak bundle myelination, and tumorigenesis. J Neurosci. 2009;29(36):11304–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang L, Sanford MT, Xin Z, Lin G, Lue TF. Role of Schwann cells in the regeneration of penile and peripheral nerves. Asian J Androl. 2015;17(5):776–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Namgung U. The role of Schwann cell-axon interaction in peripheral nerve regeneration. Cells Tissues Organs. 2014;200(1):6–12.

    Article  CAS  PubMed  Google Scholar 

  7. Harty BL, Monk KR. Unwrapping the unappreciated: recent progress in Remak Schwann cell biology. Curr Opin Neurobiol. 2017;47:131–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Stolt CC, Wegner M. Schwann cells and their transcriptional network: evolution of key regulators of peripheral myelination. Brain Res. 2016;1641(Pt A):101–10.

    Article  CAS  PubMed  Google Scholar 

  9. Britsch S, et al. The transcription factor Sox10 is a key regulator of peripheral glial development. Genes Dev. 2001;15(1):66–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jessen KR, Mirsky R. Schwann cells and their precursors emerge as major regulators of nerve development. Trends Neurosci. 1999;22(9):402–10.

    Article  CAS  PubMed  Google Scholar 

  11. Quintes S, et al. Zeb2 is essential for Schwann cell differentiation, myelination and nerve repair. Nat Neurosci. 2016;19(8):1050–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wu LM, et al. Zeb2 recruits HDAC-NuRD to inhibit notch and controls Schwann cell differentiation and remyelination. Nat Neurosci. 2016;19(8):1060–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Busuttil F, Rahim AA, Phillips JB. Combining gene and Stem cell therapy for peripheral nerve tissue engineering. Stem Cells Dev. 2017;26(4):231–8.

    Article  PubMed  Google Scholar 

  14. Hoffman PN. A conditioning lesion induces changes in gene expression and axonal transport that enhance regeneration by increasing the intrinsic growth state of axons. Exp Neurol. 2010;223(1):11–8.

    Article  CAS  PubMed  Google Scholar 

  15. Kazakova N, et al. A screen for mutations in zebrafish that affect myelin gene expression in Schwann cells and oligodendrocytes. Dev Biol. 2006;297(1):1–13.

    Article  CAS  PubMed  Google Scholar 

  16. Maggi SP, Lowe JB 3rd, Mackinnon SE. Pathophysiology of nerve injury. Clin Plast Surg. 2003;30(2):109–26.

    Article  PubMed  Google Scholar 

  17. Waller A. Experiments on the section of the glossopharyngeal and hypoglossal nerves of the frog, and observations of the alterations produced thereby in the structure of their primitive Fibres. Philos Trans R Soc Lond. 1850;140:423–9.

    Article  Google Scholar 

  18. van Niekerk EA, Tuszynski MH, Lu P, Dulin JN. Molecular and cellular mechanisms of axonal regeneration after spinal cord injury. Mol Cell Proteom. 2016;15(2):394–408.

    Article  CAS  Google Scholar 

  19. Oudega M, Xu XM. Schwann cell transplantation for repair of the adult spinal cord. J Neurotrauma. 2006;23(3–4):453–67.

    Article  PubMed  Google Scholar 

  20. You S, Petrov T, Chung PH, Gordon T. The expression of the low affinity nerve growth factor receptor in long-term denervated Schwann cells. Glia. 1997;20(2):87–100.

    Article  CAS  PubMed  Google Scholar 

  21. Chen ZL, Yu WM, Strickland S. Peripheral regeneration. Ann Rev Neurosci. 2007;30:209–33.

    Article  CAS  PubMed  Google Scholar 

  22. David S, Aguayo AJ. Axonal elongation into peripheral nervous system "bridges" after central nervous system injury in adult rats. Science (New York, NY). 1981;214(4523):931–3.

    Article  CAS  Google Scholar 

  23. Gaudet AD, Popovich PG, Ramer MS. Wallerian degeneration: gaining perspective on inflammatory events after peripheral nerve injury. J Neuroinflammation. 2011;8:110.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Scheib J, Hoke A. Advances in peripheral nerve regeneration. Nat Rev Neurol. 2013;9(12):668–76.

    Article  CAS  PubMed  Google Scholar 

  25. Michaelevski I, et al. Signaling to transcription networks in the neuronal retrograde injury response. Sci Signal. 2010;3(130):ra53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Stam FJ, et al. Identification of candidate transcriptional modulators involved in successful regeneration after nerve injury. Eur J Neurosci. 2007;25(12):3629–37.

    Article  PubMed  Google Scholar 

  27. Boyd JG, Gordon T. Neurotrophic factors and their receptors in axonal regeneration and functional recovery after peripheral nerve injury. Mol Neurobiol. 2003;27(3):277–324.

    Article  CAS  PubMed  Google Scholar 

  28. Fu SY, Gordon T. The cellular and molecular basis of peripheral nerve regeneration. Mol Neurobiol. 1997;14(1–2):67–116.

    Article  CAS  PubMed  Google Scholar 

  29. Jessen KR, Mirsky R. The repair Schwann cell and its function in regenerating nerves. J Physiol. 2016;594(13):3521–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gordon T, Tyreman N, Raji MA. The basis for diminished functional recovery after delayed peripheral nerve repair. J Neurosci. 2011;31(14):5325–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Brushart TM. Nerve repair: Oxford University Press; 2011.

    Google Scholar 

  32. He X, et al. A histone deacetylase 3-dependent pathway delimits peripheral myelin growth and functional regeneration. Nat Med. 2018;24(3):338–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. IJ-P J, Jansen K, Gramsbergen A, Meek MF. Transection of peripheral nerves, bridging strategies and effect evaluation. Biomaterials. 2004;25(9):1583–92.

    Article  CAS  Google Scholar 

  34. Levi AD, et al. The use of autologous Schwann cells to supplement sciatic nerve repair with a large gap: first in human experience. Cell Transplant. 2016;25(7):1395–403.

    Article  PubMed  Google Scholar 

  35. Hendry JM, Alvarez-Veronesi MC, Snyder-Warwick A, Gordon T, Borschel GH. Side-to-side nerve bridges support donor axon regeneration into chronically Denervated nerves and are associated with characteristic changes in Schwann cell phenotype. Neurosurgery. 2015;77(5):803–13.

    Article  PubMed  Google Scholar 

  36. Gordon T, et al. Nerve cross-bridging to enhance nerve regeneration in a rat model of delayed nerve repair. PLoS One. 2015;10(5):e0127397.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Hundepool CA, et al. Optimizing decellularization techniques to create a new nerve allograft: an in vitro study using rodent nerve segments. Neurosurg Focus. 2017;42(3):E4.

    Article  PubMed  Google Scholar 

  38. Jiang X, et al. (2016) Effect of frankincense extract on nerve recovery in the rat sciatic nerve damage model. Evidence-based complementary and alternative medicine : eCAM 2016:3617216.

    Google Scholar 

  39. Ma J, et al. Effect of metformin on Schwann cells under hypoxia condition. Int J Clin Exp Pathol. 2015;8(6):6748–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Hendry JM, et al. ErbB2 blockade with Herceptin (trastuzumab) enhances peripheral nerve regeneration after repair of acute or chronic peripheral nerve injury. Ann Neurol. 2016;80(1):112–26.

    Article  CAS  PubMed  Google Scholar 

  41. Ju DT, et al. Nerve regeneration potential of Protocatechuic acid in RSC96 Schwann cells by induction of cellular proliferation and migration through IGF-IR-PI3K-Akt signaling. Chin J Physiol. 2015;58(6):412–9.

    Article  CAS  PubMed  Google Scholar 

  42. Liu H, et al. Salidroside promotes peripheral nerve regeneration based on tissue engineering strategy using Schwann cells and PLGA: in vitro and in vivo. Sci Rep. 2017;7:39869.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tuffaha SH, et al. Therapeutic augmentation of the growth hormone axis to improve outcomes following peripheral nerve injury. Expert Opin Ther Targets. 2016;20(10):1259–65.

    Article  CAS  PubMed  Google Scholar 

  44. Saceda J, et al. Effect of recombinant human growth hormone on peripheral nerve regeneration: experimental work on the ulnar nerve of the rat. Neurosci Lett. 2011;504(2):146–50.

    Article  CAS  PubMed  Google Scholar 

  45. Devesa P, et al. Growth hormone treatment enhances the functional recovery of sciatic nerves after transection and repair. Muscle Nerve. 2012;45(3):385–92.

    Article  CAS  PubMed  Google Scholar 

  46. Tuffaha SH, et al. Growth hormone therapy accelerates axonal regeneration, promotes motor Reinnervation, and reduces muscle atrophy following peripheral nerve injury. Plast Reconstr Surg. 2016;137(6):1771–80.

    Article  CAS  PubMed  Google Scholar 

  47. Muheremu A, Ao Q. Past, present, and future of nerve conduits in the treatment of peripheral nerve injury. Biomed Res Int. 2015;2015:237507.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Yi S, et al. Regulation of Schwann cell proliferation and migration by miR-1 targeting brain-derived neurotrophic factor after peripheral nerve injury. Sci Rep. 2016;6:29121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lin G, et al. Brain-derived neurotrophic factor promotes nerve regeneration by activating the JAK/STAT pathway in Schwann cells. Transl Androl Urol. 2016;5(2):167–75.

    Article  PubMed  PubMed Central  Google Scholar 

  50. de Winter F, et al. Gene therapy approaches to enhance regeneration of the injured peripheral nerve. Eur J Pharmacol. 2013;719(1–3):145–52.

    Article  PubMed  CAS  Google Scholar 

  51. Zhang Z, Wang H, Sun Y, Li H, Wang N. Klf7 modulates the differentiation and proliferation of chicken preadipocyte. Acta Biochim Biophys Sin. 2013;45(4):280–8.

    Article  CAS  PubMed  Google Scholar 

  52. Zou H, Ho C, Wong K, Tessier-Lavigne M. Axotomy-induced Smad1 activation promotes axonal growth in adult sensory neurons. J Neurosci. 2009;29(22):7116–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wang Y, et al. Sciatic nerve regeneration in KLF7-transfected acellular nerve allografts. Neurol Res. 2016;38(3):242–54.

    Article  CAS  PubMed  Google Scholar 

  54. Wang Y, et al. KLF7-transfected Schwann cell graft transplantation promotes sciatic nerve regeneration. Neuroscience. 2017;340:319–32.

    Article  CAS  PubMed  Google Scholar 

  55. Marquardt LM, et al. Finely tuned temporal and spatial delivery of GDNF promotes enhanced nerve regeneration in a long nerve defect model. Tissue Eng Part A. 2015;21(23–24):2852–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ziegler L, Grigoryan S, Yang IH, Thakor NV, Goldstein RS. Efficient generation of schwann cells from human embryonic stem cell-derived neurospheres. Stem Cell Rev. 2011;7(2):394–403.

    Article  Google Scholar 

  57. Cui L, et al. Transplantation of embryonic stem cells improves nerve repair and functional recovery after severe sciatic nerve axotomy in rats. Stem Cells (Dayton, Ohio). 2008;26(5):1356–65.

    Article  CAS  Google Scholar 

  58. Lee EJ, et al. Regeneration of peripheral nerves by transplanted sphere of human mesenchymal stem cells derived from embryonic stem cells. Biomaterials. 2012;33(29):7039–46.

    Article  CAS  PubMed  Google Scholar 

  59. Wang H, Wu J, Zhang X, Ding L, Zeng Q. Study of synergistic role of allogenic skin-derived precursor differentiated Schwann cells and heregulin-1beta in nerve regeneration with an acellular nerve allograft. Neurochem Int. 2016;97:146–53.

    Article  CAS  PubMed  Google Scholar 

  60. Gu Y, et al. Basic fibroblast growth factor (bFGF) facilitates differentiation of adult dorsal root ganglia-derived neural stem cells toward Schwann cells by binding to FGFR-1 through MAPK/ERK activation. J Mol Neurosci. 2014;52(4):538–51.

    Article  CAS  PubMed  Google Scholar 

  61. Gu X, Ding F, Yang Y, Liu J. Construction of tissue engineered nerve grafts and their application in peripheral nerve regeneration. Prog Neurobiol. 2011;93(2):204–30.

    Article  CAS  PubMed  Google Scholar 

  62. Evans GR. Peripheral nerve injury: a review and approach to tissue engineered constructs. Anat Rec. 2001;263(4):396–404.

    Article  CAS  PubMed  Google Scholar 

  63. Johnson EO, Soucacos PN. Nerve repair: experimental and clinical evaluation of biodegradable artificial nerve guides. Injury. 2008;39(Suppl 3):S30–6.

    Article  PubMed  Google Scholar 

  64. Xu Y, et al. A silk fibroin/collagen nerve scaffold seeded with a co-culture of Schwann cells and adipose-derived stem cells for sciatic nerve regeneration. PLoS One. 2016;11(1):e0147184.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Tang X, et al. Bridging peripheral nerve defects with a tissue engineered nerve graft composed of an in vitro cultured nerve equivalent and a silk fibroin-based scaffold. Biomaterials. 2012;33(15):3860–7.

    Article  CAS  PubMed  Google Scholar 

  66. Schuh CM, Monforte X, Hackethal J, Redl H, Teuschl AH. Covalent binding of placental derived proteins to silk fibroin improves schwann cell adhesion and proliferation. J Mater Sci Mater Med. 2016;27(12):188.

    Article  PubMed  CAS  Google Scholar 

  67. Das S, et al. In vivo studies of silk based gold nano-composite conduits for functional peripheral nerve regeneration. Biomaterials. 2015;62:66–75.

    Article  CAS  PubMed  Google Scholar 

  68. Das S, et al. Data in support of in vivo studies of silk based gold nano-composite conduits for functional peripheral nerve regeneration. Data Brief. 2015;4:315–21.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Li BH, Yang K, Wang X. Biodegradable magnesium wire promotes regeneration of compressed sciatic nerves. Neural Regen Res. 2016;11(12):2012–7.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Li G, Zhang L, Yang Y. Tailoring of chitosan scaffolds with heparin and gamma-aminopropyltriethoxysilane for promoting peripheral nerve regeneration. Colloids Surf B Biointerfaces. 2015;134:413–22.

    Article  CAS  PubMed  Google Scholar 

  71. Tonazzini I, Moffa M, Pisignano D, Cecchini M. Neuregulin 1 functionalization of organic fibers for Schwann cell guidance. Nanotechnology. 2017;28(15):155303.

    Article  PubMed  CAS  Google Scholar 

  72. Mandal BB, Kapoor S, Kundu SC. Silk fibroin/polyacrylamide semi-interpenetrating network hydrogels for controlled drug release. Biomaterials. 2009;30(14):2826–36.

    Article  CAS  PubMed  Google Scholar 

  73. Jing S, Jiang D, Wen S, Wang J, Yang C. Preparation and characterization of collagen/silica composite scaffolds for peripheral nerve regeneration. J Porous Mater. 2014;21(5):699–708.

    Article  CAS  Google Scholar 

  74. Zhang L, et al. Sustained local release of NGF from a chitosan-Sericin composite scaffold for treating chronic nerve compression. ACS Appl Mater Interfaces. 2017;9(4):3432–44.

    Article  CAS  PubMed  Google Scholar 

  75. Du J, et al. Prompt peripheral nerve regeneration induced by a hierarchically aligned fibrin nanofiber hydrogel. Acta Biomater. 2017;55:296.

    Article  CAS  PubMed  Google Scholar 

  76. Wu X, et al. Functional self-assembling peptide nanofiber hydrogel for peripheral nerve regeneration. Regen Biomater. 2017;4(1):21–30.

    Article  CAS  PubMed  Google Scholar 

  77. Li G, et al. Preparation of graphene oxide/polyacrylamide composite hydrogel and its effect on Schwann cells attachment and proliferation. Colloids Surf B Biointerfaces. 2016;143:547–56.

    Article  CAS  PubMed  Google Scholar 

  78. Bhutto MA, et al. Fabrication and characterization of vitamin B5 loaded poly (l-lactide-co-caprolactone)/silk fiber aligned electrospun nanofibers for schwann cell proliferation. Colloids Surf B Biointerfaces. 2016;144:108–17.

    Article  CAS  PubMed  Google Scholar 

  79. Suzuki K, et al. Electrospun nanofiber sheets incorporating methylcobalamin promote nerve regeneration and functional recovery in a rat sciatic nerve crush injury model. Acta Biomater. 2017;53:250–9.

    Article  CAS  PubMed  Google Scholar 

  80. Nune M, Krishnan UM, Sethuraman S. PLGA nanofibers blended with designer self-assembling peptides for peripheral neural regeneration. Mater Sci Eng C Mater Biol Appl. 2016;62:329–37.

    Article  CAS  PubMed  Google Scholar 

  81. Lv D, Zhou L, Zheng X, & Hu Y (2017) Sustained release of collagen VI potentiates sciatic nerve regeneration by modulating macrophage phenotype. The European journal of neuroscience.

    Google Scholar 

  82. Zhang K, Huang D, Yan Z, Wang C. Heparin/collagen encapsulating nerve growth factor multilayers coated aligned PLLA nanofibrous scaffolds for nerve tissue engineering. J Biomed Mater Res A. 2017;105:1900.

    Article  CAS  PubMed  Google Scholar 

  83. Guest JD, Hiester ED, Bunge RP. Demyelination and Schwann cell responses adjacent to injury epicenter cavities following chronic human spinal cord injury. Exp Neurol. 2005;192(2):384–93.

    Article  CAS  PubMed  Google Scholar 

  84. Wang ZH, Walter GF, Gerhard L. The expression of nerve growth factor receptor on Schwann cells and the effect of these cells on the regeneration of axons in traumatically injured human spinal cord. Acta Neuropathol. 1996;91(2):180–4.

    Article  CAS  PubMed  Google Scholar 

  85. Brook GA, et al. Spontaneous longitudinally orientated axonal regeneration is associated with the Schwann cell framework within the lesion site following spinal cord compression injury of the rat. J Neurosci Res. 1998;53(1):51–65.

    Article  CAS  PubMed  Google Scholar 

  86. Beattie MS, et al. Endogenous repair after spinal cord contusion injuries in the rat. Exp Neurol. 1997;148(2):453–63.

    Article  CAS  PubMed  Google Scholar 

  87. Blight AR, Young W. Central axons in injured cat spinal cord recover electrophysiological function following remyelination by Schwann cells. J Neurol Sci. 1989;91(1–2):15–34.

    Article  CAS  PubMed  Google Scholar 

  88. Pinzon A, Calancie B, Oudega M, Noga BR. Conduction of impulses by axons regenerated in a Schwann cell graft in the transected adult rat thoracic spinal cord. J Neurosci Res. 2001;64(5):533–41.

    Article  CAS  PubMed  Google Scholar 

  89. Kanno H, Pearse DD, Ozawa H, Itoi E, Bunge MB. Schwann cell transplantation for spinal cord injury repair: its significant therapeutic potential and prospectus. Rev Neurosci. 2015;26(2):121–8.

    Article  CAS  PubMed  Google Scholar 

  90. Young W. Spinal cord regeneration. Cell Transplant. 2014;23(4–5):573–611.

    Article  PubMed  Google Scholar 

  91. Liu G, Wang X, Shao G, Liu Q. Genetically modified Schwann cells producing glial cell line-derived neurotrophic factor inhibit neuronal apoptosis in rat spinal cord injury. Mol Med Rep. 2014;9(4):1305–12.

    Article  CAS  PubMed  Google Scholar 

  92. Iannotti C, et al. Glial cell line-derived neurotrophic factor-enriched bridging transplants promote propriospinal axonal regeneration and enhance myelination after spinal cord injury. Exp Neurol. 2003;183(2):379–93.

    Article  CAS  PubMed  Google Scholar 

  93. Duncan ID, Aguayo AJ, Bunge RP, Wood PM. Transplantation of rat Schwann cells grown in tissue culture into the mouse spinal cord. J Neurol Sci. 1981;49(2):241–52.

    Article  CAS  PubMed  Google Scholar 

  94. Totoiu MO, Keirstead HS. Spinal cord injury is accompanied by chronic progressive demyelination. J Comp Neurol. 2005;486(4):373–83.

    Article  PubMed  Google Scholar 

  95. Zhang S-Q, et al. Edaravone combined with Schwann cell transplantation may repair spinal cord injury in rats. Neural Regen Res. 2015;10(2):230–6.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Iorgulescu JB, et al. Acute Putrescine supplementation with Schwann cell implantation improves sensory and serotonergic axon growth and functional recovery in spinal cord injured rats. Neural Plast. 2015;2015:186385.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Zhang SQ, et al. Improvements in neuroelectrophysiological and rear limb functions in rats with spinal cord injury after Schwann cell transplantation in combination with a C5a receptor antagonist. Gene Mol Res. 2015;14(4):15158–68.

    Article  CAS  Google Scholar 

  98. Takami T, et al. Schwann cell but not olfactory ensheathing glia transplants improve hindlimb locomotor performance in the moderately contused adult rat thoracic spinal cord. J Neurosci. 2002;22(15):6670–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Zhang SQ, et al. Transplantation of human telomerase reverse transcriptase gene-transfected Schwann cells for repairing spinal cord injury. Neural Regen Res. 2015;10(12):2040–7.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Ban DX, et al. Combination of activated Schwann cells with bone mesenchymal stem cells: the best cell strategy for repair after spinal cord injury in rats. Regen Med. 2011;6(6):707–20.

    Article  CAS  PubMed  Google Scholar 

  101. Yang E-Z, et al. Multichannel polymer scaffold seeded with activated Schwann cells and bone mesenchymal stem cells improves axonal regeneration and functional recovery after rat spinal cord injury. Acta Pharmacol Sin. 2017;38(5):623–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Anderson KD, et al. Safety of autologous human Schwann cell transplantation in subacute thoracic spinal cord injury. J Neurotrauma. 2017;34(21):2950–63.

    Article  PubMed  Google Scholar 

  103. Xu XM. Breaking news in spinal cord injury research: FDA approved phase I clinical trial of human, autologous schwann cell transplantation in patients with spinal cord injuries. Neural Regen Res. 2012;7(22):1685–7.

    PubMed  PubMed Central  Google Scholar 

  104. Shi H, et al. Derivation of Schwann cell precursors from neural crest cells resident in bone marrow for cell therapy to improve peripheral nerve regeneration. Biomaterials. 2016;89:25–37.

    Article  CAS  PubMed  Google Scholar 

  105. Latasa MJ, Jimenez-Lara AM, Cosgaya JM. Retinoic acid regulates Schwann cell migration via NEDD9 induction by transcriptional and post-translational mechanisms. Biochim Biophys Acta. 2016;1863(7 Pt A):1510–8.

    Article  CAS  PubMed  Google Scholar 

  106. Wu W, Liu Y, Wang Y. Sam68 promotes Schwann cell proliferation by enhancing the PI3K/Akt pathway and acts on regeneration after sciatic nerve crush. Biochem Biophys Res Commun. 2016;473(4):1045–51.

    Article  CAS  PubMed  Google Scholar 

  107. Yi S, et al. miR-sc3, a novel microRNA, promotes Schwann cell proliferation and migration by targeting Astn1. Cell Transplant. 2016;25(5):973–82.

    Article  PubMed  Google Scholar 

  108. Gu Y, et al. The influence of substrate stiffness on the behavior and functions of Schwann cells in culture. Biomaterials. 2012;33(28):6672–81.

    Article  CAS  PubMed  Google Scholar 

  109. Wu Y, Wang L, Guo B, Shao Y, Ma PX. Electroactive biodegradable polyurethane significantly enhanced Schwann cells myelin gene expression and neurotrophin secretion for peripheral nerve tissue engineering. Biomaterials. 2016;87:18–31.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Yao .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yao, L., Priyadarshani, P. (2018). Application of Schwann Cells in Neural Tissue Engineering. In: Glial Cell Engineering in Neural Regeneration . Springer, Cham. https://doi.org/10.1007/978-3-030-02104-7_3

Download citation

Publish with us

Policies and ethics