Skip to main content

Solvent Property of Amine Based Solvents

  • Chapter
  • First Online:
Post-combustion CO2 Capture Technology

Abstract

In this chapter, the method about selection of amine solvent for CO2 capture plant was proposed in order to improve the efficiency of the process. The properties of amines solvents related to CO2 capture were discussed in order to design the plant based on the selected amines. The physical properties (i.e. density, viscosity, specific heat capacity, Henry’s law constant, and diffusivity) are very key parameters for design of the plant or determination the performance of solvent. The measurement of those physical properties are also present in this chapter. Also, the present correlations for the experimental results of Henry’s law constant and the diffusivity are discussed. In addition, some chemical properties related to the reaction of amines and CO2 such as the solubility, reaction kinetics should be addressed before the further study. Those parameter determine the capacity of solvent or the reaction rate of the solvent, which are necessary for the process design or process stimulation. In order to understand the process of reaction, the ions speciation plots are studied by using the different methods, which are added in this chapter. The trend of the new solvent and the improvement of the current solvent are discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agar, D., Tan, Y., & Zhang, X. (2008). CO2 removal processes by means of absorption using thermomorphic biphasic aqueous amine solutions. Patent WO/2008/015217.

    Google Scholar 

  • Balasundram, V., Ibrahim, N., Kasmani, R. M., Isha, R., Hamid, M. K. A., Hasbullah, H., et al. (2018). Catalytic upgrading of sugarcane bagasse pyrolysis vapours over rare earth metal (Ce) loaded HZSM-5: Effect of catalyst to biomass ratio on the organic compounds in pyrolysis oil. Applied Energy, 220, 787–799.

    Article  Google Scholar 

  • Bates, E. D., Mayton, R. D., Ntai, I., & Davis, J. H. (2002). CO2 capture by a task-specific ionic liquid. Journal of the American Chemical Society, 124, 926–927.

    Article  Google Scholar 

  • Bhatti, U. H., Shah, A. K., Kim, J. N., You, J. K., Choi, S. H., Lim, D. H., et al. (2017). Effects of transition metal oxide catalysts on MEA solvent regeneration for the post-combustion carbon capture process. ACS Sustainable Chemistry & Engineering, 5, 5862–5868.

    Article  Google Scholar 

  • Clarke, J. (1964). Kinetics of absorption of cardon dioxide in monoethanolamine solutions at short contact times. Industrial and Engineering Chemistry Fundamentals, 3, 239–245.

    Article  Google Scholar 

  • David, M. A., Gary, T. R., & Chau-Chyun, C. (1991). Model of vapor-liquid equilibria for aqueous acid gas-alkanolamine systems. 2. Representation of H2S and CO2 solubility in aqueous MDEA and CO2 solubility in aqueous mixtures of MDEA with MEA or DEA. Industrial and Engineering Chemistry Research, 30, 543–555.

    Article  Google Scholar 

  • Eckert, J. (1970). Selecting proper distillation column packing. Chemical Engineering Progress, 66, 39.

    Google Scholar 

  • Fan, G.-J., Wee, A. G., Idem, R., & Tontiwachwuthikul, P. (2009). NMR studies of amine species in MEA–CO2–H2O system: Modification of the model of vapor–liquid equilibrium (VLE). Industrial and Engineering Chemistry Research, 48, 2717–2720.

    Article  Google Scholar 

  • Frusteri, F., Cordaro, M., Cannilla, C., & Bonura, G. (2015). Multifunctionality of Cu–ZnO–ZrO2/H-ZSM5 catalysts for the one-step CO2-to-DME hydrogenation reaction. Applied Catalysis, B: Environmental, 162, 57–65.

    Article  Google Scholar 

  • Gao, H., Gao, G., Liu, H., Luo, X., Liang, Z., & Idem, R. O. (2017a). Density, viscosity, and refractive index of aqueous CO2-loaded and-unloaded ethylaminoethanol (EAE) solutions from 293.15 to 323.15 K for post combustion CO2 Capture. Journal of Chemical and Engineering Data, 62, 4205–4214.

    Article  Google Scholar 

  • Gao, P., Li, S., Bu, X., Dang, S., Liu, Z., Wang, H., et al. (2017b). Direct conversion of CO2 into liquid fuels with high selectivity over a bifunctional catalyst. Nature Chemistry, 6, 1019–1024.

    Article  Google Scholar 

  • Haghtalab, A., Eghbali, H., & Shojaeian, A. (2014). Experiment and modeling solubility of CO2 in aqueous solutions of diisopropanolamine + 2-amino-2-methyl-1-propanol + piperazine at high pressures. The Journal of Chemical Thermodynamics, 71, 71–83.

    Article  Google Scholar 

  • Haimour, N., & Sandall, O.C. (1984). Absorption of carbon dioxide into aqueous methyldiethanolamine. Chemical Engineering Science, 39, 1791–1796.

    Article  Google Scholar 

  • Hartono, A., Juliussen, O., & Svendsen, H. F. (2008). Solubility of N2O in aqueous solution of diethylenetriamine. Journal of Chemical and Engineering Data, 53, 2696–2700.

    Article  Google Scholar 

  • Holmes, P. E., Naaz, M., & Poling, B. E. (1998). Ion concentrations in the CO2-NH3-H2O system from 13C NMR spectroscopy. Industrial and Engineering Chemistry Research, 37, 3281–3287.

    Article  Google Scholar 

  • Hu, W., & Chakma, A. (1990). Modelling of equilibrium solubility of CO2 and H2S in aqueous diglycolamine (DGA) solutions. Canadian Journal of Chemical Engineering, 68, 523–525.

    Article  Google Scholar 

  • Idem, R., Shi, H., Gelowitz, D., & Tontiwachwuthikul, P. (2011). Catalytic method and apparatus for separating a gaseous component from an incoming gas stream. Google Patents.

    Google Scholar 

  • Jakobsen, J. P., Krane, J., & Svendsen, H. F. (2005). Liquid-phase composition determination in CO2-H2O-alkanolamine systems: An NMR study. Industrial and Engineering Chemistry Research, 44, 9894–9903.

    Article  Google Scholar 

  • Jiang, T., Wang, T., Ma, L., Li, Y., Zhang, Q., & Zhang, X. (2012). Investigation on the xylitol aqueous-phase reforming performance for pentane production over Pt/HZSM-5 and Ni/HZSM-5 catalysts. Applied Energy, 90, 51–57.

    Article  Google Scholar 

  • Kent, R. L., & Elsenberg, B. (1976). Better data for amine treating. Hydrocabon process, 55, 87–90.

    Google Scholar 

  • Khoshbin, R., & Haghighi, M. (2013). Direct syngas to DME as a clean fuel: the beneficial use of ultrasound for the preparation of CuO–ZnO–Al2O3/HZSM-5 nanocatalyst. Chemical Engineering Research and Design, 91, 1111–1122.

    Article  Google Scholar 

  • Ko, J.-J., Tsai, T.-C., Lin, C.-Y., Wang, H.-M., & Li, M.-H. (2001). Diffusivity of nitrous oxide in aqueous alkanolamine solutions. Journal of Chemical and Engineering Data, 46, 160–165.

    Article  Google Scholar 

  • Kozak, F., Petig, A., Morris, E., Rhudy, R., & Thimsen, D. (2009). Chilled ammonia process for CO2 capture. Energy Procedia, 1, 1419–1426.

    Article  Google Scholar 

  • Li, M.-H., & Lai, M.-D. (1995). Solubility and Diffusivity of N2O and CO2 in (Monoethanolamine + N-Methyldiethanolamine + Water) and in (Monoethanolamine + 2-Amino-2-methyl-1-propanol + Water). Journal of Chemical and Engineering Data, 40, 486–492.

    Article  Google Scholar 

  • Li, M.-H., & Lee, W.-C. (1996). Solubility and Diffusivity of N2O and CO2 in (Diethanolamine+ N- Methyldiethanolamine+ Water) and in (Diethanolamine+ 2-Amino-2-methyl-1-propanol+ Water). Journal of Chemical and Engineering, Data 41, 551–556.

    Article  Google Scholar 

  • Li, M.-H., & Shen, K.-P. (1993). Calculation of equilibrium solubility of carbon dioxide in aqueous mixtures of monoethyanolamine with methyldiethanolamine. Fluid Phase Equilibria, 85, 129–140.

    Article  Google Scholar 

  • Liang, Z., Idem, R., Tontiwachwuthikul, P., Yu, F., Liu, H., & Rongwong, W. (2016). Experimental study on the solvent regeneration of a CO2-loaded MEA solution using single and hybrid solid acid catalysts. AIChE Journal, 62, 753–765.

    Article  Google Scholar 

  • Liu, H., Gao, H., Idem, R., Tontiwachwuthikul, P., & Liang, Z. (2017a). Analysis of CO2 solubility and absorption heat into 1-dimethylamino-2-propanol solution. Chemical Engineering Science, 170, 3–15.

    Article  Google Scholar 

  • Liu, H., Liang, Z., Sema, T., Rongwong, W., Li, C., Na, Y., et al. (2014). Kinetics of CO2 absorption into a novel 1-diethylamino-2-propanol solvent using stopped-flow technique. AIChE Journal, 60, 3502–3510.

    Article  Google Scholar 

  • Liu, H., Luo, X., Liang, Z., & Tontiwachwuthikul, P. (2015). Determination of Vapor-Liquid Equilibrium (VLE) Plots of 1-Dimethylamino-2-propanol Solutions Using the pH Method. Industrial and Engineering Chemistry Research, 54, 4709–4716.

    Article  Google Scholar 

  • Liu, H., Zhang, X., Gao, H., Liang, Z., Idem, R., & Tontiwachwuthikul, P. (2017b). Investigation of CO2 regeneration in single and blended amine solvents with and without catalyst. Industrial and Engineering Chemistry Research, 56, 7656–7664.

    Article  Google Scholar 

  • Maneeintr, K., Henni, A., Idem, R. O., Tontiwachwuthikul, P., & Wee, A. G. (2008). Physical and transport properties of aqueous amino alcohol solutions for CO2 capture from flue gas streams. Process Safety and Environmental Protection, 86, 291–295.

    Article  Google Scholar 

  • Munder, B., Lidal, H., & Sandall, O.C. (2000). Effect of carbon dioxide loading on the solubility of nitrous oxide in aqueous solutions of 2-(tert-butylamino) ethanol. Journal of Chemical and Engineering Data, 45, 1195–1200.

    Article  Google Scholar 

  • Park, J.-Y., Yoon, S. J., Lee, H., Yoon, J.-H., Shim, J.-G., Lee, J. K., et al. (2002). Density, Viscosity, and Solubility of CO2 in Aqueous Solutions of 2-Amino-2-hydroxymethyl-1, 3-propanediol. Journal of Chemical and Engineering Data, 47, 970–973.

    Article  Google Scholar 

  • Park, M. K., & Sandall, O. C. (2001). Solubility of carbon dioxide and nitrous oxide in 50 mass methyldiethanolamine. Journal of Chemical and Engineering Data, 46, 166–168.

    Article  Google Scholar 

  • Raynal, L., Alix, P., Bouillon, P.-A., Gomez, A., de Nailly, M.l.F., Jacquin, M., Kittel, J., di Lella, A., Mougin, P., & Trapy, J. (2011a). The DMX™ process: An original solution for lowering the cost of post-combustion carbon capture. Energy Procedia, 4, 779–786.

    Article  Google Scholar 

  • Raynal, L., Bouillon, P.-A., Gomez, A., & Broutin, P. (2011b). From MEA to demixing solvents and future steps, a roadmap for lowering the cost of post-combustion carbon capture. Chemical Engineering Journal, 171, 742–752.

    Article  Google Scholar 

  • Redlich, O., & Kister, A. (1948). Algebraic representation of thermodynamic properties and the classification of solutions. Industrial and Engineering Chemistry, 40, 345–348.

    Article  Google Scholar 

  • Rochelle, G. T. (2009). Amine scrubbing for CO2 capture. Science, 325, 1652–1654.

    Article  Google Scholar 

  • Saravanan, K., Ham, H., Tsubaki, N., & Bae, J. W. (2017). Recent progress for direct synthesis of dimethyl ether from syngas on the heterogeneous bifunctional hybrid catalysts. Applied Catalysis, B: Environmental, 217, 494–522.

    Article  Google Scholar 

  • Shi, H., Naami, A., Idem, R., & Tontiwachwuthikul, P. (2014a). 1D NMR analysis of a quaternary MEA–DEAB–CO2–H2O amine system: liquid phase speciation and vapor–liquid equilibria at CO2 absorption and solvent regeneration conditions. Industrial and Engineering Chemistry Research, 53, 8577–8591.

    Article  Google Scholar 

  • Shi, H., Naami, A., Idem, R., & Tontiwachwuthikul, P. (2014b). Catalytic and non catalytic solvent regeneration during absorption-based CO2 capture with single and blended reactive amine solvents. International Journal of Greenhouse Gas Control, 26, 39–50.

    Article  Google Scholar 

  • Shi, Y., Cao, Y., Duan, Y., Chen, H., Chen, Y., Yang, M., et al. (2016). Upgrading of palmitic acid to iso-alkanes over bi-functional Mo/ZSM-22 catalysts. Green Chemistry, 18, 4633–4648.

    Article  Google Scholar 

  • Srisang, W., Pouryousefi, F., Osei, P. A., Decardi-Nelson, B., Akachuku, A., Tontiwachwuthikul, P., et al. (2017a). Evaluation of the heat duty of catalyst-aided amine-based post combustion CO2 capture. Chemical Engineering Science, 170, 48–57.

    Article  Google Scholar 

  • Srisang, W., Pouryousefi, F., Osei, P. A., Decardi-Nelson, B., Akachuku, A., Tontiwachwuthikul, P., & Idem, R. (2017b). Evaluation of the heat duty of catalyst-aided amine-based post combustion CO2 capture. Chemical Engineering Science.

    Google Scholar 

  • Tontiwachwuthikul, P., Meisen, A., & Lim, C. J. (1991). Solubility of CO2 in 2-Amino-2-methyl-1-propanol Solutions. Journal of Chemical and Engineering Data, 36, 130–133.

    Article  Google Scholar 

  • Van Holst, J., Politiek, P. P., Niederer, J. P., & Versteeg, G. F. (2006). CO2 capture from flue gas using amino acid salt solutions. In Proceedings of 8th International Conference on Greenhouse Gas Control Technologies.

    Google Scholar 

  • Versteeg, G. F., & Van Swaalj, W. (1988). Solubility and diffusivity of acid gases (carbon dioxide, nitrous oxide) in aqueous alkanolamine solutions. Journal of Chemical and Engineering Data, 33, 29–34.

    Article  Google Scholar 

  • Wang, G., Yuan, X., & Yu, K. (2005). Review of mass-transfer correlations for packed columns*. Industrial and Engineering Chemistry Research, 44, 8715–8729.

    Article  Google Scholar 

  • Wang, Y., Xu, S., Otto, F., & Mather, A. (1992). Solubility of N2O in alkanolamines and in mixed solvents. The Chemical Engineering Journal, 48, 31–40.

    Article  Google Scholar 

  • Wei, J., Ge, Q., Yao, R., Wen, Z., Fang, C., Guo, L., et al. (2017). Directly converting CO2 into a gasoline fuel. Nature Communications, 8, 15174.

    Article  Google Scholar 

  • Yusoff, R., Aroua, M., Shamiri, A., Ahmady, A., Jusoh, N., Asmuni, N., et al. (2013). Density and viscosity of aqueous mixtures of N-methyldiethanolamines (MDEA) and ionic liquids. Journal of Chemical and Engineering Data, 58, 240–247.

    Article  Google Scholar 

  • Zhang, Q., Wang, T., Li, B., Jiang, T., Ma, L., Zhang, X., et al. (2012). Aqueous phase reforming of sorbitol to bio-gasoline over Ni/HZSM-5 catalysts. Applied Energy, 97, 509–513.

    Article  Google Scholar 

  • Zhang, X., Zhang, R., Liu, H., Gao, H., & Liang, Z. (2018). Evaluating CO2 desorption performance in CO2-loaded aqueous tri-solvent blend amines with and without solid acid catalysts. Applied Energy, 218, 417–429.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helei Liu .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s), under exclusive licence to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, H., Idem, R., Tontiwachwuthikul, P. (2019). Solvent Property of Amine Based Solvents. In: Post-combustion CO2 Capture Technology. SpringerBriefs in Petroleum Geoscience & Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-00922-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00922-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00921-2

  • Online ISBN: 978-3-030-00922-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics